位置:51电子网 » 技术资料 » EDA/PLD

可编程控制器在船舶减摇鳍随动系统中应用

发布时间:2008/5/28 0:00:00 访问次数:662

减摇鳍是最为行之有效的一种主动式船舶减摇装置,它的减摇效率高,经过60多年的发展,已广泛应用于各种船舶中。它的减摇原理是:船舶在水中行驶过程中,当鳍在水中有一个速度和倾斜角的时候,就会产生一个升力,利用此升力产生的力矩来抵抗海浪的干扰力矩,便可达到减小船舶横摇的目的。随着科学技术的发展,减摇鳍系统正在逐步完善,减摇效果也在不断提高。

近年来,在工业生产的自动化控制领域中,正普遍利用一种新型控制设备--可编程控制器(plc)。目前的plc正在向着精度更高、功能更多、使用更方便的方向发展。从plc的发展趋势来看,plc控制技术将成为今后工业自动化的主要手段。将其引入减摇鳍控制系统中,实现数字化控制,将进一步提高控制系统的灵活性和可靠性。

1 减摇鳍随动系统的构成及工作原理

减摇鳍的随动系统连接来自控制系统的控制信号,是转鳍机构的中间转换和功率放大环节。改造前,每个随动系统由±15v稳压电源板dycj、综合放大板skcj、操纵转换板sccj、液压控制系统以用转鳍机构、反馈、限位元件等组成。随动系统应尽可能"快速、准确、稳定"地工作。目前,大多数减摇鳍的随动系统都是"电-液随动系统"。本系统以nj4型减摇鳍的阀控式电液随动系统为原型,对其做了适当的改进,下面进行详细介绍。

原有随动系统的工作原理图如图1所示。首先将来自控制器的信号送到综合放大电路板skcj(该插件板能对控制信号进行隔离),与升力反馈信号进行代数求和、校正、放大,然后再与鳍角反馈信号进行二次代数求和、校正、放大,接着送到鳍机械组合体上的射流管电液伺服阀,进行电-液信号转换。电液伺服阀根据skcj板输出信号的大小和极性调节来自油源机组的液压油的流量和流向,使液压缸的活塞速度和运动方向发生变化,带动鳍机械组合体上的摇臂转动,使鳍转动到一定的角度产生相应的对抗力矩。

改造后,以上各功能完全由plc实现,原有随动系统中的各电源、插件板也将由plc各模块取代。

2 随动系统的改造

2.1 减摇鳍随动系统的改造设计

plc随动系统接收来自控制器的控制信号,经过处理后传递给伺服系统,驱动减摇鳍移动到指定位置,同时将输出信号反馈回plc,构成控制回路。系统改造后的原理如图2所示。

2.2 系统中plc的选择

由于船舶航行在环境瞬息万变的海面上,工作环境非常恶劣,比如机舱内的温度能够达到55℃,湿度更可以达到95%,并且存在各种强烈的冲击、振动和盐雾,这就要求安装在舰船上的减摇鳍系统有较强的抗干扰能力。而船舶上空间狭小,对所安装设备的体积也有一定的要求。由于减摇鳍随动系统工作环境的特殊性,对系统中的plc有较高的要求。考虑到性能指标、功能、体积和价格等因素,本文选择了松下电工的fp0系列可编程控制器。 系统主要包括电源单元、控制单元和两个模拟量输入输出单元。plc工作环境温度在0~55℃范围内,工作环境相对湿度为30%~85%,模拟输入与plc内部电路之间采用光电耦合器进行隔离,同时输入输出端设置滤波器,使之符合减摇鳍系统工作环境的要求。

2.3 plc软件实现的功能

根据系统要求,程序需要实现以下功能:

(1)对来自系统油源机组的信号进行检测,如发现油温、油位等出现故障,系统停机并自动报警。

(2)对来自控制器的输入信号进行检测,保证其始终被限定在规定范围内,以保证减摇鳍工作转角不超过其极限值;并对控制信号按一定控制规律进行处理。

(3)在鳍转动工作时,将从鳍角电位计接收到的反馈信号与输入的控制信号进行比较,构成回路,实现负反馈。将控制信号与反馈信号综合处理得到的结果作为控制指令发送给输出端口。

(4)检测plc输出给电液伺服阀的信号是否超过额定范围,如超出则做相应处理,保证伺服阀和减摇鳍正常安全地工作。

(5)在工作前或停机时根据操作需要随时将减摇鳍运行到零位或其它需要的位置。

随动系统软件功能框图如图3所示。

2.4 系统改造中存在的问题及解决方法

系统正常工作时,油温

减摇鳍是最为行之有效的一种主动式船舶减摇装置,它的减摇效率高,经过60多年的发展,已广泛应用于各种船舶中。它的减摇原理是:船舶在水中行驶过程中,当鳍在水中有一个速度和倾斜角的时候,就会产生一个升力,利用此升力产生的力矩来抵抗海浪的干扰力矩,便可达到减小船舶横摇的目的。随着科学技术的发展,减摇鳍系统正在逐步完善,减摇效果也在不断提高。

近年来,在工业生产的自动化控制领域中,正普遍利用一种新型控制设备--可编程控制器(plc)。目前的plc正在向着精度更高、功能更多、使用更方便的方向发展。从plc的发展趋势来看,plc控制技术将成为今后工业自动化的主要手段。将其引入减摇鳍控制系统中,实现数字化控制,将进一步提高控制系统的灵活性和可靠性。

1 减摇鳍随动系统的构成及工作原理

减摇鳍的随动系统连接来自控制系统的控制信号,是转鳍机构的中间转换和功率放大环节。改造前,每个随动系统由±15v稳压电源板dycj、综合放大板skcj、操纵转换板sccj、液压控制系统以用转鳍机构、反馈、限位元件等组成。随动系统应尽可能"快速、准确、稳定"地工作。目前,大多数减摇鳍的随动系统都是"电-液随动系统"。本系统以nj4型减摇鳍的阀控式电液随动系统为原型,对其做了适当的改进,下面进行详细介绍。

原有随动系统的工作原理图如图1所示。首先将来自控制器的信号送到综合放大电路板skcj(该插件板能对控制信号进行隔离),与升力反馈信号进行代数求和、校正、放大,然后再与鳍角反馈信号进行二次代数求和、校正、放大,接着送到鳍机械组合体上的射流管电液伺服阀,进行电-液信号转换。电液伺服阀根据skcj板输出信号的大小和极性调节来自油源机组的液压油的流量和流向,使液压缸的活塞速度和运动方向发生变化,带动鳍机械组合体上的摇臂转动,使鳍转动到一定的角度产生相应的对抗力矩。

改造后,以上各功能完全由plc实现,原有随动系统中的各电源、插件板也将由plc各模块取代。

2 随动系统的改造

2.1 减摇鳍随动系统的改造设计

plc随动系统接收来自控制器的控制信号,经过处理后传递给伺服系统,驱动减摇鳍移动到指定位置,同时将输出信号反馈回plc,构成控制回路。系统改造后的原理如图2所示。

2.2 系统中plc的选择

由于船舶航行在环境瞬息万变的海面上,工作环境非常恶劣,比如机舱内的温度能够达到55℃,湿度更可以达到95%,并且存在各种强烈的冲击、振动和盐雾,这就要求安装在舰船上的减摇鳍系统有较强的抗干扰能力。而船舶上空间狭小,对所安装设备的体积也有一定的要求。由于减摇鳍随动系统工作环境的特殊性,对系统中的plc有较高的要求。考虑到性能指标、功能、体积和价格等因素,本文选择了松下电工的fp0系列可编程控制器。 系统主要包括电源单元、控制单元和两个模拟量输入输出单元。plc工作环境温度在0~55℃范围内,工作环境相对湿度为30%~85%,模拟输入与plc内部电路之间采用光电耦合器进行隔离,同时输入输出端设置滤波器,使之符合减摇鳍系统工作环境的要求。

2.3 plc软件实现的功能

根据系统要求,程序需要实现以下功能:

(1)对来自系统油源机组的信号进行检测,如发现油温、油位等出现故障,系统停机并自动报警。

(2)对来自控制器的输入信号进行检测,保证其始终被限定在规定范围内,以保证减摇鳍工作转角不超过其极限值;并对控制信号按一定控制规律进行处理。

(3)在鳍转动工作时,将从鳍角电位计接收到的反馈信号与输入的控制信号进行比较,构成回路,实现负反馈。将控制信号与反馈信号综合处理得到的结果作为控制指令发送给输出端口。

(4)检测plc输出给电液伺服阀的信号是否超过额定范围,如超出则做相应处理,保证伺服阀和减摇鳍正常安全地工作。

(5)在工作前或停机时根据操作需要随时将减摇鳍运行到零位或其它需要的位置。

随动系统软件功能框图如图3所示。

2.4 系统改造中存在的问题及解决方法

系统正常工作时,油温

相关IC型号

热门点击

 

推荐技术资料

声道前级设计特点
    与通常的Hi-Fi前级不同,EP9307-CRZ这台分... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!