常规的CMOS晶体管
发布时间:2017/10/17 21:42:32 访问次数:390
常规的CMOS晶体管,从源区TA8083F至沟道和漏区由两个背靠背的PN结组成,沟道的掺杂类型与其漏极与源极相反。当足够大的电位差施于栅极与源极之间时,电场会在栅氧化层下方的半导体表面感应少子电荷,形成反型沟道;这时沟道的导电类型与其漏极与源极相同。沟道形成后,MC)SFET即可让电流通过,器件T作于反型模式(IM)。由于栅氧化层与 半导体沟道界面的不完整性,载流子受到散射,导致迁移率下降及可靠性降低。进一步地,伴随MOS器件特征尺寸持续不断地按比例缩小,基于PN结的MOS场效应晶体管结构弊端也越来越明显。通常需要将一个掺杂浓度为1×1019cm3的N型半导体在几纳米范围内转变为浓度为1×101:cm3的P型半导体,采用这样超陡峭掺杂浓度梯度是为了避免源漏穿通造成漏电。而这样设计的器件将严重限制器件工艺的热预算。由于掺杂原子的统计分布以及在一定温度下掺杂原子扩散的自然属性,在纳米尺度范围内制作这样超陡峭的PN结变得极困难,造成晶体管阈值电压下降,漏电严重,甚至无法关闭。这是未来半导体制造业难以逾越的障碍[6引。
常规的CMOS晶体管,从源区TA8083F至沟道和漏区由两个背靠背的PN结组成,沟道的掺杂类型与其漏极与源极相反。当足够大的电位差施于栅极与源极之间时,电场会在栅氧化层下方的半导体表面感应少子电荷,形成反型沟道;这时沟道的导电类型与其漏极与源极相同。沟道形成后,MC)SFET即可让电流通过,器件T作于反型模式(IM)。由于栅氧化层与 半导体沟道界面的不完整性,载流子受到散射,导致迁移率下降及可靠性降低。进一步地,伴随MOS器件特征尺寸持续不断地按比例缩小,基于PN结的MOS场效应晶体管结构弊端也越来越明显。通常需要将一个掺杂浓度为1×1019cm3的N型半导体在几纳米范围内转变为浓度为1×101:cm3的P型半导体,采用这样超陡峭掺杂浓度梯度是为了避免源漏穿通造成漏电。而这样设计的器件将严重限制器件工艺的热预算。由于掺杂原子的统计分布以及在一定温度下掺杂原子扩散的自然属性,在纳米尺度范围内制作这样超陡峭的PN结变得极困难,造成晶体管阈值电压下降,漏电严重,甚至无法关闭。这是未来半导体制造业难以逾越的障碍[6引。