位置:51电子网 » 技术资料 » 其它综合

浅谈光刻胶在集成电路制造中的应用性能

发布时间:2008/6/3 0:00:00 访问次数:885

(电子科技大学 微电子与固体电子学院,成都 610054)


摘 要:光刻胶技术是曝光技术中重要的组成部分,高性能的曝光工具需要有与之相配套的高性能的光刻胶才能真正获得高分辨率的加工能力。主要围绕光刻胶在集成电路制造中的应用,对其反应机理及应用性能指标进行阐述,重点从工艺的角度去提出新的研究方向。

关键词:光刻胶;应用性能;反应机理;集成电路;光刻

中图分类号:tn305.7 文献标识码: a 文章编号:1003-353x(2005)06-0032-05

1 引言

作为微电子技术核心的集成电路制造技术是电子工业的基础,其发展更新的速度是其他产业无法企及的。在集成电路制作过程中,光刻是其关键工艺[1]。光刻胶涂覆在半导体、导体和绝缘体上,经曝光显影后留下的部分对底层起保护作用,然后采用超净高纯试剂进行蚀刻,从而完成了将掩膜版图形转移到底层上的图形转移过程。一个ic的制造一般需要经过10多次图形转移过程才能完成,光刻胶及蚀刻技术是实现集成电路微细加工技术的关键[2]。蚀刻的方式主要分为湿法和干法两种,等离子与反应离子刻蚀(rie)属于干法蚀刻,主要是通过物理轰击溅射和化学反应的综合作用来腐蚀薄膜层,而物理溅射是通过具有一定能量的粒子轰击作用,使膜层的化学键断裂,进而发生分解;而湿法蚀刻是最简便的方法。

光刻胶又称光致抗蚀剂,即通过紫外光、电子束、离子束、x射线等的照射或辐射,使其溶解度发生变化的耐蚀刻薄膜材料,经曝光和显影而使溶解度增加的是正性光刻胶,反之为负性光刻胶。光刻胶的分类及其特点见表1。

随着ic特征尺寸亚微米、深亚微米方向快速发展,现有的光刻机和光刻胶已无法适应新的光刻工艺要求。光刻机的曝光波长也在由紫外谱g线 (436nm)→i线(365nm)→248nm→193nm→极紫外光(euv)→x射线,甚至采用非光学光刻(电子束曝光、离子束曝光),光刻胶产品的综合性能也必须随之提高,才能符合集成工艺制程的要求 [3]。以下几点为光刻胶制造中的关键技术:配方技术、超洁净技术、超微量分析技术及应用检测能力。 制程特性要求有:涂布均匀性、灵敏度、分辨率及制程宽容度。


2 光刻胶的反应机理

光刻胶在接受一定波长的光或者射线时,会相应的发生一种光化学反应或者激励作用。光化学反应中的光吸收是在化学键合中起作用的处于原子最外层的电子由基态转入激励态时引起的。对于有机物,基态与激励态的能量差为3~6ev,相当于该能量差的光(即波长为0.2~0.4μm的光)被有机物强烈吸收,使在化学键合中起作用的电子转入激励态。化学键合在受到这种激励时,或者分离或者改变键合对象,发生化学变化。电子束、x射线及离子束(即被加速的粒子)注入物质后,因与物质具有的电子相互作用,能量逐渐消失。电子束失去的能量转移到物质的电子中,因此生成激励状态的电子或二次电子或离子。这些电子或离子均可诱发光刻胶的化学反应。

ic制造中所用光刻胶通常有三种成分:树脂或基体材料、感光化合物(pac)以及可控制光刻胶机械性能(基体粘滞性)并使其保持液体状态的溶剂 [4]。正性光刻胶中,pac在曝光前后发生了从抑制剂到感光增强剂的变化。pac能抑制树脂溶解,但它吸收光能后会发生分解,其生成物在碱性显影液中又能促进树脂的溶解,得到所需电路图形。

形象地讲,如果一个聚合物的曝光将导致断链作用,则聚合物在显影剂中就更容易溶解,其行为同正性光刻胶;若聚合物的曝光是产生交联,那么 pac将会抑制光刻胶在显影剂中的溶解,其行为同负性光刻胶。

目前最常用的正性光刻胶为dqn,分别表示感光化合物(dq)和基体材料(n)。对于线和线曝光,dqn是占压倒优势的光刻胶配方,其基体材料为稠密的酚醛树脂聚合物,其反应机理如图1[5] 。

dq在上述反应后变为一种羧酸,而基体作为树脂与其形成一种树脂羧酸混合物,将迅速吸收水分,反应放出的n也使光刻胶形成泡沫,进而促进溶解。在此溶解过程中,羧酸会分裂而成为水溶的胺。

3 应用性能指标及研究方向

3.1 应用性能指标

集成电路的进一步发展需要相应的曝光技术的支持,光刻胶技术是曝光技术的重要组成部分。高性能的曝光工具需要与之相配套的高性能的光刻胶才能真正获得高分辨率的加工能力。光刻胶在集成电路中的实际应用性

(电子科技大学 微电子与固体电子学院,成都 610054)


摘 要:光刻胶技术是曝光技术中重要的组成部分,高性能的曝光工具需要有与之相配套的高性能的光刻胶才能真正获得高分辨率的加工能力。主要围绕光刻胶在集成电路制造中的应用,对其反应机理及应用性能指标进行阐述,重点从工艺的角度去提出新的研究方向。

关键词:光刻胶;应用性能;反应机理;集成电路;光刻

中图分类号:tn305.7 文献标识码: a 文章编号:1003-353x(2005)06-0032-05

1 引言

作为微电子技术核心的集成电路制造技术是电子工业的基础,其发展更新的速度是其他产业无法企及的。在集成电路制作过程中,光刻是其关键工艺[1]。光刻胶涂覆在半导体、导体和绝缘体上,经曝光显影后留下的部分对底层起保护作用,然后采用超净高纯试剂进行蚀刻,从而完成了将掩膜版图形转移到底层上的图形转移过程。一个ic的制造一般需要经过10多次图形转移过程才能完成,光刻胶及蚀刻技术是实现集成电路微细加工技术的关键[2]。蚀刻的方式主要分为湿法和干法两种,等离子与反应离子刻蚀(rie)属于干法蚀刻,主要是通过物理轰击溅射和化学反应的综合作用来腐蚀薄膜层,而物理溅射是通过具有一定能量的粒子轰击作用,使膜层的化学键断裂,进而发生分解;而湿法蚀刻是最简便的方法。

光刻胶又称光致抗蚀剂,即通过紫外光、电子束、离子束、x射线等的照射或辐射,使其溶解度发生变化的耐蚀刻薄膜材料,经曝光和显影而使溶解度增加的是正性光刻胶,反之为负性光刻胶。光刻胶的分类及其特点见表1。

随着ic特征尺寸亚微米、深亚微米方向快速发展,现有的光刻机和光刻胶已无法适应新的光刻工艺要求。光刻机的曝光波长也在由紫外谱g线 (436nm)→i线(365nm)→248nm→193nm→极紫外光(euv)→x射线,甚至采用非光学光刻(电子束曝光、离子束曝光),光刻胶产品的综合性能也必须随之提高,才能符合集成工艺制程的要求 [3]。以下几点为光刻胶制造中的关键技术:配方技术、超洁净技术、超微量分析技术及应用检测能力。 制程特性要求有:涂布均匀性、灵敏度、分辨率及制程宽容度。


2 光刻胶的反应机理

光刻胶在接受一定波长的光或者射线时,会相应的发生一种光化学反应或者激励作用。光化学反应中的光吸收是在化学键合中起作用的处于原子最外层的电子由基态转入激励态时引起的。对于有机物,基态与激励态的能量差为3~6ev,相当于该能量差的光(即波长为0.2~0.4μm的光)被有机物强烈吸收,使在化学键合中起作用的电子转入激励态。化学键合在受到这种激励时,或者分离或者改变键合对象,发生化学变化。电子束、x射线及离子束(即被加速的粒子)注入物质后,因与物质具有的电子相互作用,能量逐渐消失。电子束失去的能量转移到物质的电子中,因此生成激励状态的电子或二次电子或离子。这些电子或离子均可诱发光刻胶的化学反应。

ic制造中所用光刻胶通常有三种成分:树脂或基体材料、感光化合物(pac)以及可控制光刻胶机械性能(基体粘滞性)并使其保持液体状态的溶剂 [4]。正性光刻胶中,pac在曝光前后发生了从抑制剂到感光增强剂的变化。pac能抑制树脂溶解,但它吸收光能后会发生分解,其生成物在碱性显影液中又能促进树脂的溶解,得到所需电路图形。

形象地讲,如果一个聚合物的曝光将导致断链作用,则聚合物在显影剂中就更容易溶解,其行为同正性光刻胶;若聚合物的曝光是产生交联,那么 pac将会抑制光刻胶在显影剂中的溶解,其行为同负性光刻胶。

目前最常用的正性光刻胶为dqn,分别表示感光化合物(dq)和基体材料(n)。对于线和线曝光,dqn是占压倒优势的光刻胶配方,其基体材料为稠密的酚醛树脂聚合物,其反应机理如图1[5] 。

dq在上述反应后变为一种羧酸,而基体作为树脂与其形成一种树脂羧酸混合物,将迅速吸收水分,反应放出的n也使光刻胶形成泡沫,进而促进溶解。在此溶解过程中,羧酸会分裂而成为水溶的胺。

3 应用性能指标及研究方向

3.1 应用性能指标

集成电路的进一步发展需要相应的曝光技术的支持,光刻胶技术是曝光技术的重要组成部分。高性能的曝光工具需要与之相配套的高性能的光刻胶才能真正获得高分辨率的加工能力。光刻胶在集成电路中的实际应用性

相关IC型号
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!