芯片技术
发布时间:2008/5/28 0:00:00 访问次数:533
生物芯片技术概论
生物芯片技术通过微加工工艺在厘米见方的芯片上集成有成千上万个与生命相关的信息分子,它可以对生命科学与医学中的各种生物化学反应过程进行集成,从而实现对基因、配体、抗原等生物活性物质进行高效快捷的测试和分析。它的出现将给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品与环境监督等众多领域带来巨大的革新甚至革命。
生物芯片技术研究的背景
原定于2005年竣工的人类30亿碱基序列的测定工作(humangenomeproject,基因组计划)由于高效测序仪的引入和商业机构的介入有望在2000年底提前完成,届时人类遗传信息将一览无遗。怎样利用该计划所揭示的大量遗传信息去探明人类众多疾病的起因和发病机理,并为其诊断、治疗及易感性研究提供有力的工具,则是继人类基因组计划完成后生命科学领域内又一重大课题。现在,以功能研究为核心的后基因组计划已经悄然走来,为此,研究人员必需设计和利用更为高效的硬软件技术来对如此庞大的基因组及蛋白质组信息进行加工和研究。建立新型、高效、快速的检测和分析技术就势在必行了。这些高效的分析与测定技术已有多种,如dna质谱分析法,荧光单分子分析法,杂交分析等。其中以生物芯片技术为基础的许多新型分析技术发展最快也最具发展潜力。早在1988年,bains等人就将短的dna片段固定到支持物上,以反向杂交的方式进行序列测定。当今,随着生命科学与众多相关学科(如计算机科学、材料科学、微加工技术、有机合成技术等)的迅猛发展,为生物芯片的实现提供了实践上的可能性。生物芯片的设想最早起始于80年代中期,90年代美国affymetrix公司实现了dna探针分子的高密度集成,即将特定序列的寡核苷酸片段以很高的密度有序地固定在一块玻璃、硅等固体片基上,作为核酸信息的载体,通过与样品的杂交反应获取其核酸序列信息。生物芯片由于采用了微电子学的并行处理和高密度集成的概念,因此具有高效、高信息量等突出优点。
光引导原位合成
原位合成适于制造寡核苷酸和寡肽微点阵芯片,具有合成速度快、相对成本低、便于规模化生产等优点。照相平板印刷技术是平板印刷技术与dna和多肽固相化学合成技术相结合的产物,可以在预设位点按照预定的序列方便快捷地合成大量寡核苷酸或多肽分子。在生物芯片研制方面享有盛誉的美国affymetrix公司运用该技术制造大规模集成的genechip。原位合成后的寡核苷酸或多肽分子与玻片共价连接。它用预先制作的蔽光板和经过修饰的4种碱基,通过光进行活化从而以固相方式合成微点阵。合成前,预先将玻片氨基化,并用光不稳定保护剂将活化的氨基保护起来。聚合用单体分子一端活化另一端受光敏保护剂的保护。选择适当的挡光板使需要聚合的部位透光,不需要发生聚合的位点蔽光。这样,光通过挡光板照射到支持物上,受光部分的氨基解保护,从而与单体分子发生偶联反应。每次反应在成千上万个位点上添加一个特定的碱基。由于发生反应后的部位依然接受保护剂的保护,所以可以通过控制挡光板透光与蔽光图案以及每次参与反应单体分子的种类,就可以实现在特定位点合成大量预定序列寡核苷酸或寡肽的目的。由于照相平板印刷技术每步的合成效率较低(95%),合成30nt的终产率仅为20%,所以该技术只能合成30nt左右长度的寡核苷酸。在此基础上,有人将光引导合成技术与半导体工业所用的光敏抗蚀技术相结合,以酸作为去保护剂,将每步合成产率提高到99%,但制造工艺复杂程度增加了许多。所以如何简便地提高合成产率是光引导原位合成技术有待解决的问题。(参见图1.)
微点阵芯片的制作方法
仅就目前的发展情况,微点阵芯片主要包括dna微点阵芯片(又称基因芯片?或dna芯片)和蛋白或多肽微点阵芯片两种。不过相信,基于其它生物大分子特异性相互作用的生物芯片也会相继问世。所谓dna微点阵芯片是指同时将大量的探针分子固定到固相支持物上,借助核酸分子杂交配对的特异性对dna样品的序列信息进行高效率的解读和分析,以用于基因表达谱的检测、突变筛查、dna多肽性分析、dna测序和基因组文库作图等研究。类似地,多肽或蛋白微点阵芯片则将许多序列不同的多肽或蛋白分子按照预定的位置固定于芯片片基上,通过蛋白或多肽与其特异结合分子的相互作用而实现对样品蛋白或其它配体作用特异性的研究,包括抗原表位分析、蛋白定量检查等。
点样法
点样法在多聚物的设计方面与原位合成技术相似。只是合成工作用传统的dna、多肽合成仪或pcr扩增或体内克隆等方法完成。大量制备好的核酸探针、多肽、蛋白等生物大分子再用特殊的自动化微量点样装置将其以较高密度互不干扰地印点于经过特殊处理的玻片、尼龙膜、硝酸纤维素膜上,并使其与支持物牢固结合。支持物需预先经过特殊处理,例如多聚赖氨酸或氨基硅烷等。亦可用其它共价结合的方法将这些生物大分子牢牢地附着于支持物上。
分子印章原位合成
分子印章技术与上述两种方法在合成原理上相同,区别仅在于该技术利用预
生物芯片技术通过微加工工艺在厘米见方的芯片上集成有成千上万个与生命相关的信息分子,它可以对生命科学与医学中的各种生物化学反应过程进行集成,从而实现对基因、配体、抗原等生物活性物质进行高效快捷的测试和分析。它的出现将给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品与环境监督等众多领域带来巨大的革新甚至革命。
生物芯片技术研究的背景
原定于2005年竣工的人类30亿碱基序列的测定工作(humangenomeproject,基因组计划)由于高效测序仪的引入和商业机构的介入有望在2000年底提前完成,届时人类遗传信息将一览无遗。怎样利用该计划所揭示的大量遗传信息去探明人类众多疾病的起因和发病机理,并为其诊断、治疗及易感性研究提供有力的工具,则是继人类基因组计划完成后生命科学领域内又一重大课题。现在,以功能研究为核心的后基因组计划已经悄然走来,为此,研究人员必需设计和利用更为高效的硬软件技术来对如此庞大的基因组及蛋白质组信息进行加工和研究。建立新型、高效、快速的检测和分析技术就势在必行了。这些高效的分析与测定技术已有多种,如dna质谱分析法,荧光单分子分析法,杂交分析等。其中以生物芯片技术为基础的许多新型分析技术发展最快也最具发展潜力。早在1988年,bains等人就将短的dna片段固定到支持物上,以反向杂交的方式进行序列测定。当今,随着生命科学与众多相关学科(如计算机科学、材料科学、微加工技术、有机合成技术等)的迅猛发展,为生物芯片的实现提供了实践上的可能性。生物芯片的设想最早起始于80年代中期,90年代美国affymetrix公司实现了dna探针分子的高密度集成,即将特定序列的寡核苷酸片段以很高的密度有序地固定在一块玻璃、硅等固体片基上,作为核酸信息的载体,通过与样品的杂交反应获取其核酸序列信息。生物芯片由于采用了微电子学的并行处理和高密度集成的概念,因此具有高效、高信息量等突出优点。
光引导原位合成
原位合成适于制造寡核苷酸和寡肽微点阵芯片,具有合成速度快、相对成本低、便于规模化生产等优点。照相平板印刷技术是平板印刷技术与dna和多肽固相化学合成技术相结合的产物,可以在预设位点按照预定的序列方便快捷地合成大量寡核苷酸或多肽分子。在生物芯片研制方面享有盛誉的美国affymetrix公司运用该技术制造大规模集成的genechip。原位合成后的寡核苷酸或多肽分子与玻片共价连接。它用预先制作的蔽光板和经过修饰的4种碱基,通过光进行活化从而以固相方式合成微点阵。合成前,预先将玻片氨基化,并用光不稳定保护剂将活化的氨基保护起来。聚合用单体分子一端活化另一端受光敏保护剂的保护。选择适当的挡光板使需要聚合的部位透光,不需要发生聚合的位点蔽光。这样,光通过挡光板照射到支持物上,受光部分的氨基解保护,从而与单体分子发生偶联反应。每次反应在成千上万个位点上添加一个特定的碱基。由于发生反应后的部位依然接受保护剂的保护,所以可以通过控制挡光板透光与蔽光图案以及每次参与反应单体分子的种类,就可以实现在特定位点合成大量预定序列寡核苷酸或寡肽的目的。由于照相平板印刷技术每步的合成效率较低(95%),合成30nt的终产率仅为20%,所以该技术只能合成30nt左右长度的寡核苷酸。在此基础上,有人将光引导合成技术与半导体工业所用的光敏抗蚀技术相结合,以酸作为去保护剂,将每步合成产率提高到99%,但制造工艺复杂程度增加了许多。所以如何简便地提高合成产率是光引导原位合成技术有待解决的问题。(参见图1.)
微点阵芯片的制作方法
仅就目前的发展情况,微点阵芯片主要包括dna微点阵芯片(又称基因芯片?或dna芯片)和蛋白或多肽微点阵芯片两种。不过相信,基于其它生物大分子特异性相互作用的生物芯片也会相继问世。所谓dna微点阵芯片是指同时将大量的探针分子固定到固相支持物上,借助核酸分子杂交配对的特异性对dna样品的序列信息进行高效率的解读和分析,以用于基因表达谱的检测、突变筛查、dna多肽性分析、dna测序和基因组文库作图等研究。类似地,多肽或蛋白微点阵芯片则将许多序列不同的多肽或蛋白分子按照预定的位置固定于芯片片基上,通过蛋白或多肽与其特异结合分子的相互作用而实现对样品蛋白或其它配体作用特异性的研究,包括抗原表位分析、蛋白定量检查等。
点样法
点样法在多聚物的设计方面与原位合成技术相似。只是合成工作用传统的dna、多肽合成仪或pcr扩增或体内克隆等方法完成。大量制备好的核酸探针、多肽、蛋白等生物大分子再用特殊的自动化微量点样装置将其以较高密度互不干扰地印点于经过特殊处理的玻片、尼龙膜、硝酸纤维素膜上,并使其与支持物牢固结合。支持物需预先经过特殊处理,例如多聚赖氨酸或氨基硅烷等。亦可用其它共价结合的方法将这些生物大分子牢牢地附着于支持物上。
分子印章原位合成
分子印章技术与上述两种方法在合成原理上相同,区别仅在于该技术利用预
生物芯片技术概论
生物芯片技术通过微加工工艺在厘米见方的芯片上集成有成千上万个与生命相关的信息分子,它可以对生命科学与医学中的各种生物化学反应过程进行集成,从而实现对基因、配体、抗原等生物活性物质进行高效快捷的测试和分析。它的出现将给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品与环境监督等众多领域带来巨大的革新甚至革命。
生物芯片技术研究的背景
原定于2005年竣工的人类30亿碱基序列的测定工作(humangenomeproject,基因组计划)由于高效测序仪的引入和商业机构的介入有望在2000年底提前完成,届时人类遗传信息将一览无遗。怎样利用该计划所揭示的大量遗传信息去探明人类众多疾病的起因和发病机理,并为其诊断、治疗及易感性研究提供有力的工具,则是继人类基因组计划完成后生命科学领域内又一重大课题。现在,以功能研究为核心的后基因组计划已经悄然走来,为此,研究人员必需设计和利用更为高效的硬软件技术来对如此庞大的基因组及蛋白质组信息进行加工和研究。建立新型、高效、快速的检测和分析技术就势在必行了。这些高效的分析与测定技术已有多种,如dna质谱分析法,荧光单分子分析法,杂交分析等。其中以生物芯片技术为基础的许多新型分析技术发展最快也最具发展潜力。早在1988年,bains等人就将短的dna片段固定到支持物上,以反向杂交的方式进行序列测定。当今,随着生命科学与众多相关学科(如计算机科学、材料科学、微加工技术、有机合成技术等)的迅猛发展,为生物芯片的实现提供了实践上的可能性。生物芯片的设想最早起始于80年代中期,90年代美国affymetrix公司实现了dna探针分子的高密度集成,即将特定序列的寡核苷酸片段以很高的密度有序地固定在一块玻璃、硅等固体片基上,作为核酸信息的载体,通过与样品的杂交反应获取其核酸序列信息。生物芯片由于采用了微电子学的并行处理和高密度集成的概念,因此具有高效、高信息量等突出优点。
光引导原位合成
原位合成适于制造寡核苷酸和寡肽微点阵芯片,具有合成速度快、相对成本低、便于规模化生产等优点。照相平板印刷技术是平板印刷技术与dna和多肽固相化学合成技术相结合的产物,可以在预设位点按照预定的序列方便快捷地合成大量寡核苷酸或多肽分子。在生物芯片研制方面享有盛誉的美国affymetrix公司运用该技术制造大规模集成的genechip。原位合成后的寡核苷酸或多肽分子与玻片共价连接。它用预先制作的蔽光板和经过修饰的4种碱基,通过光进行活化从而以固相方式合成微点阵。合成前,预先将玻片氨基化,并用光不稳定保护剂将活化的氨基保护起来。聚合用单体分子一端活化另一端受光敏保护剂的保护。选择适当的挡光板使需要聚合的部位透光,不需要发生聚合的位点蔽光。这样,光通过挡光板照射到支持物上,受光部分的氨基解保护,从而与单体分子发生偶联反应。每次反应在成千上万个位点上添加一个特定的碱基。由于发生反应后的部位依然接受保护剂的保护,所以可以通过控制挡光板透光与蔽光图案以及每次参与反应单体分子的种类,就可以实现在特定位点合成大量预定序列寡核苷酸或寡肽的目的。由于照相平板印刷技术每步的合成效率较低(95%),合成30nt的终产率仅为20%,所以该技术只能合成30nt左右长度的寡核苷酸。在此基础上,有人将光引导合成技术与半导体工业所用的光敏抗蚀技术相结合,以酸作为去保护剂,将每步合成产率提高到99%,但制造工艺复杂程度增加了许多。所以如何简便地提高合成产率是光引导原位合成技术有待解决的问题。(参见图1.)
微点阵芯片的制作方法
仅就目前的发展情况,微点阵芯片主要包括dna微点阵芯片(又称基因芯片?或dna芯片)和蛋白或多肽微点阵芯片两种。不过相信,基于其它生物大分子特异性相互作用的生物芯片也会相继问世。所谓dna微点阵芯片是指同时将大量的探针分子固定到固相支持物上,借助核酸分子杂交配对的特异性对dna样品的序列信息进行高效率的解读和分析,以用于基因表达谱的检测、突变筛查、dna多肽性分析、dna测序和基因组文库作图等研究。类似地,多肽或蛋白微点阵芯片则将许多序列不同的多肽或蛋白分子按照预定的位置固定于芯片片基上,通过蛋白或多肽与其特异结合分子的相互作用而实现对样品蛋白或其它配体作用特异性的研究,包括抗原表位分析、蛋白定量检查等。
点样法
点样法在多聚物的设计方面与原位合成技术相似。只是合成工作用传统的dna、多肽合成仪或pcr扩增或体内克隆等方法完成。大量制备好的核酸探针、多肽、蛋白等生物大分子再用特殊的自动化微量点样装置将其以较高密度互不干扰地印点于经过特殊处理的玻片、尼龙膜、硝酸纤维素膜上,并使其与支持物牢固结合。支持物需预先经过特殊处理,例如多聚赖氨酸或氨基硅烷等。亦可用其它共价结合的方法将这些生物大分子牢牢地附着于支持物上。
分子印章原位合成
分子印章技术与上述两种方法在合成原理上相同,区别仅在于该技术利用预
生物芯片技术通过微加工工艺在厘米见方的芯片上集成有成千上万个与生命相关的信息分子,它可以对生命科学与医学中的各种生物化学反应过程进行集成,从而实现对基因、配体、抗原等生物活性物质进行高效快捷的测试和分析。它的出现将给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品与环境监督等众多领域带来巨大的革新甚至革命。
生物芯片技术研究的背景
原定于2005年竣工的人类30亿碱基序列的测定工作(humangenomeproject,基因组计划)由于高效测序仪的引入和商业机构的介入有望在2000年底提前完成,届时人类遗传信息将一览无遗。怎样利用该计划所揭示的大量遗传信息去探明人类众多疾病的起因和发病机理,并为其诊断、治疗及易感性研究提供有力的工具,则是继人类基因组计划完成后生命科学领域内又一重大课题。现在,以功能研究为核心的后基因组计划已经悄然走来,为此,研究人员必需设计和利用更为高效的硬软件技术来对如此庞大的基因组及蛋白质组信息进行加工和研究。建立新型、高效、快速的检测和分析技术就势在必行了。这些高效的分析与测定技术已有多种,如dna质谱分析法,荧光单分子分析法,杂交分析等。其中以生物芯片技术为基础的许多新型分析技术发展最快也最具发展潜力。早在1988年,bains等人就将短的dna片段固定到支持物上,以反向杂交的方式进行序列测定。当今,随着生命科学与众多相关学科(如计算机科学、材料科学、微加工技术、有机合成技术等)的迅猛发展,为生物芯片的实现提供了实践上的可能性。生物芯片的设想最早起始于80年代中期,90年代美国affymetrix公司实现了dna探针分子的高密度集成,即将特定序列的寡核苷酸片段以很高的密度有序地固定在一块玻璃、硅等固体片基上,作为核酸信息的载体,通过与样品的杂交反应获取其核酸序列信息。生物芯片由于采用了微电子学的并行处理和高密度集成的概念,因此具有高效、高信息量等突出优点。
光引导原位合成
原位合成适于制造寡核苷酸和寡肽微点阵芯片,具有合成速度快、相对成本低、便于规模化生产等优点。照相平板印刷技术是平板印刷技术与dna和多肽固相化学合成技术相结合的产物,可以在预设位点按照预定的序列方便快捷地合成大量寡核苷酸或多肽分子。在生物芯片研制方面享有盛誉的美国affymetrix公司运用该技术制造大规模集成的genechip。原位合成后的寡核苷酸或多肽分子与玻片共价连接。它用预先制作的蔽光板和经过修饰的4种碱基,通过光进行活化从而以固相方式合成微点阵。合成前,预先将玻片氨基化,并用光不稳定保护剂将活化的氨基保护起来。聚合用单体分子一端活化另一端受光敏保护剂的保护。选择适当的挡光板使需要聚合的部位透光,不需要发生聚合的位点蔽光。这样,光通过挡光板照射到支持物上,受光部分的氨基解保护,从而与单体分子发生偶联反应。每次反应在成千上万个位点上添加一个特定的碱基。由于发生反应后的部位依然接受保护剂的保护,所以可以通过控制挡光板透光与蔽光图案以及每次参与反应单体分子的种类,就可以实现在特定位点合成大量预定序列寡核苷酸或寡肽的目的。由于照相平板印刷技术每步的合成效率较低(95%),合成30nt的终产率仅为20%,所以该技术只能合成30nt左右长度的寡核苷酸。在此基础上,有人将光引导合成技术与半导体工业所用的光敏抗蚀技术相结合,以酸作为去保护剂,将每步合成产率提高到99%,但制造工艺复杂程度增加了许多。所以如何简便地提高合成产率是光引导原位合成技术有待解决的问题。(参见图1.)
微点阵芯片的制作方法
仅就目前的发展情况,微点阵芯片主要包括dna微点阵芯片(又称基因芯片?或dna芯片)和蛋白或多肽微点阵芯片两种。不过相信,基于其它生物大分子特异性相互作用的生物芯片也会相继问世。所谓dna微点阵芯片是指同时将大量的探针分子固定到固相支持物上,借助核酸分子杂交配对的特异性对dna样品的序列信息进行高效率的解读和分析,以用于基因表达谱的检测、突变筛查、dna多肽性分析、dna测序和基因组文库作图等研究。类似地,多肽或蛋白微点阵芯片则将许多序列不同的多肽或蛋白分子按照预定的位置固定于芯片片基上,通过蛋白或多肽与其特异结合分子的相互作用而实现对样品蛋白或其它配体作用特异性的研究,包括抗原表位分析、蛋白定量检查等。
点样法
点样法在多聚物的设计方面与原位合成技术相似。只是合成工作用传统的dna、多肽合成仪或pcr扩增或体内克隆等方法完成。大量制备好的核酸探针、多肽、蛋白等生物大分子再用特殊的自动化微量点样装置将其以较高密度互不干扰地印点于经过特殊处理的玻片、尼龙膜、硝酸纤维素膜上,并使其与支持物牢固结合。支持物需预先经过特殊处理,例如多聚赖氨酸或氨基硅烷等。亦可用其它共价结合的方法将这些生物大分子牢牢地附着于支持物上。
分子印章原位合成
分子印章技术与上述两种方法在合成原理上相同,区别仅在于该技术利用预
上一篇:基因芯片技术
热门点击
- 红外热释电处理芯片BISS0001应用资料
- 多芯片组件技术的发展及应用
- 确好芯片KGD的概述及其应用
- MC908MR32CFUE的技术参数
- 红外感应式灯控芯片PT8A2621及其应用
- MC68HC908JL3ECDW的技术参数
- YD1011 芯片介绍
- 数控单片移相器的CAD
- 串行AD和DA芯片的应用
- GD75232N的技术参数
推荐技术资料
- 单片机版光立方的制作
- N视频: http://v.youku.comN_sh... [详细]