位置:51电子网 » 技术资料 » 传感与控制

二相步进电机驱动芯片TA8435H及其应用

发布时间:2007/4/23 0:00:00 访问次数:1049

二相步进电机驱动芯片TA8435H及其应用 [日期:2005-6-28] 来源:国外电子元器件 作者:刘 升 [字体:封装形式,图1为其引脚排列图。各引脚功能如下:

脚1(S-GND):信号地;

脚2(RESET):复位端,低电平有效,当该端有效时,电路复位到起始状态,此时在任何激励方式下,输出各相都置于它们的原点;

引脚3(ENABLE):使能端,低电平有效;当该端为高电平时电路处于维持状态,此时各相输出被强制关闭;

引脚4(OSC):该脚外接电容的典型值可决定芯片内部驱动级的斩波频率(15kHz~80kHz),计算公式为:

fosc=1/5.15×COSC

式中,COSC的单位为μFfOSC的单位为kHz。

脚5(CW/CCW):正、反转控制引脚;

脚6、7(CK2、CK1):时钟输入端,可选择单时钟输入或双时钟输入,最大时钟输入频率为5kHz;

脚8、9(M1、M2):选择激励方式,00表示步进电机工作在整步方式,10为半步方式,01为1/4细分方式,11为1/8细分方式;

脚10(REF IN):VNF输入控制,接高电平时VNF为0.8V,接低电平时VNF为0.5V;

脚11(MO):输出监视,用于监视输出电流峰值位置;

脚13(VCC):逻辑电路供电引脚,一般为5V;

脚15、24(VMB、VMA):B相和A相负载电源端;

脚16、19( B、B):B相输出引脚;

脚17、22(PG-B、PG-A):B相和A相负载地;

脚18、21(NFB、NFA):B相和A相电流检测端,由该引脚外接电阻和REF-IN引脚控制的输出电流为:IO=VNF/RNF

脚20、23( A、A):A相输出引脚。

3 实际应用电路

笔者为省重点科研项目《智能化大气污染系统的研究》所设计的电路共需驱动三个二相步进电机,以分别完成进样、采样和阀门控制。

图2是TA8435H的一个典型应用电路,该电路用一片TA8435H来驱动一个步进电机,输入信号有使能控制、正反转控制和时钟输入,通过光耦可将驱动器与输入级进行电隔离,以起到逻辑电平隔离和保护作用;该电路工作在1/8细分模式(M1、M1接高电平),可减小低速时的振动,R8和C1组成复位电路,D1~D4快恢复二极管可用来泄放绕组电流由于REF IN引脚接高电平,因此VNF为0.8V,输出级斩波电流为VNF/RNF=0.8/0.8=1A,选用不同的二相步进电机时,应根据其电流大小选择合适的R13和R14。

图3是步进电机核心控制电路,该电路能够控制如图2所示的三个步进电机驱动器。本设计采用外部定时/计数器82C53来给TA8435H提供步进脉冲。因为82C53有三个定时/计数器,可以驱动三个步进电机控制器,因而能满足设计要求;另外,82C53的工作方式3是一种方波速率发生器。在这种方式下,当CPU设置控制字后,输出将为高电平,在写完计数值后就自动开始计数,输出保持高电平;而当计到一半计数值时,输出变低直到计数到0,此后输出又变高以重新开始计数。在计数期间写入新的计数值并不影响现行的计数过程。但是若在方波半周期结束前和新计数值写入后收到GATE脉冲,那么计数器将在下一个CLK脉冲时装入新的计数值并以这个计数值开始计数。否则,新的计数值将在现行半周期结束时装入计数值。因此,只要写入不同的计数初值,就能控制步进电机的转速而不需要用软件来控制高低电平的转换,因而编程比较容易。本设计将82C53的GATE端全部接高电平,新的计数值将在现行半周期结束时起作用。

由于采用了定时/计数器82C53作为步进脉冲产生电路,因此系统编程十分简单,以下语句为控制一个步进电机的相应程序代码。

#include <reg52.h>

#include <absacc.h>

#incl

二相步进电机驱动芯片TA8435H及其应用 [日期:2005-6-28] 来源:国外电子元器件 作者:刘 升 [字体:封装形式,图1为其引脚排列图。各引脚功能如下:

脚1(S-GND):信号地;

脚2(RESET):复位端,低电平有效,当该端有效时,电路复位到起始状态,此时在任何激励方式下,输出各相都置于它们的原点;

引脚3(ENABLE):使能端,低电平有效;当该端为高电平时电路处于维持状态,此时各相输出被强制关闭;

引脚4(OSC):该脚外接电容的典型值可决定芯片内部驱动级的斩波频率(15kHz~80kHz),计算公式为:

fosc=1/5.15×COSC

式中,COSC的单位为μFfOSC的单位为kHz。

脚5(CW/CCW):正、反转控制引脚;

脚6、7(CK2、CK1):时钟输入端,可选择单时钟输入或双时钟输入,最大时钟输入频率为5kHz;

脚8、9(M1、M2):选择激励方式,00表示步进电机工作在整步方式,10为半步方式,01为1/4细分方式,11为1/8细分方式;

脚10(REF IN):VNF输入控制,接高电平时VNF为0.8V,接低电平时VNF为0.5V;

脚11(MO):输出监视,用于监视输出电流峰值位置;

脚13(VCC):逻辑电路供电引脚,一般为5V;

脚15、24(VMB、VMA):B相和A相负载电源端;

脚16、19( B、B):B相输出引脚;

脚17、22(PG-B、PG-A):B相和A相负载地;

脚18、21(NFB、NFA):B相和A相电流检测端,由该引脚外接电阻和REF-IN引脚控制的输出电流为:IO=VNF/RNF

脚20、23( A、A):A相输出引脚。

3 实际应用电路

笔者为省重点科研项目《智能化大气污染系统的研究》所设计的电路共需驱动三个二相步进电机,以分别完成进样、采样和阀门控制。

图2是TA8435H的一个典型应用电路,该电路用一片TA8435H来驱动一个步进电机,输入信号有使能控制、正反转控制和时钟输入,通过光耦可将驱动器与输入级进行电隔离,以起到逻辑电平隔离和保护作用;该电路工作在1/8细分模式(M1、M1接高电平),可减小低速时的振动,R8和C1组成复位电路,D1~D4快恢复二极管可用来泄放绕组电流由于REF IN引脚接高电平,因此VNF为0.8V,输出级斩波电流为VNF/RNF=0.8/0.8=1A,选用不同的二相步进电机时,应根据其电流大小选择合适的R13和R14。

图3是步进电机核心控制电路,该电路能够控制如图2所示的三个步进电机驱动器。本设计采用外部定时/计数器82C53来给TA8435H提供步进脉冲。因为82C53有三个定时/计数器,可以驱动三个步进电机控制器,因而能满足设计要求;另外,82C53的工作方式3是一种方波速率发生器。在这种方式下,当CPU设置控制字后,输出将为高电平,在写完计数值后就自动开始计数,输出保持高电平;而当计到一半计数值时,输出变低直到计数到0,此后输出又变高以重新开始计数。在计数期间写入新的计数值并不影响现行的计数过程。但是若在方波半周期结束前和新计数值写入后收到GATE脉冲,那么计数器将在下一个CLK脉冲时装入新的计数值并以这个计数值开始计数。否则,新的计数值将在现行半周期结束时装入计数值。因此,只要写入不同的计数初值,就能控制步进电机的转速而不需要用软件来控制高低电平的转换,因而编程比较容易。本设计将82C53的GATE端全部接高电平,新的计数值将在现行半周期结束时起作用。

由于采用了定时/计数器82C53作为步进脉冲产生电路,因此系统编程十分简单,以下语句为控制一个步进电机的相应程序代码。

#include <reg52.h>

#include <absacc.h>

#incl

相关IC型号

热门点击

 

推荐技术资料

滑雪绕桩机器人
   本例是一款非常有趣,同时又有一定调试难度的玩法。EDE2116AB... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!