多相晶粒图像分析中复杂晶界的提取
发布时间:2008/5/27 0:00:00 访问次数:447
    
    摘要:提出了一种在多相晶粒图像分析中提取复杂晶界的有效方法。通过预处理消除晶粒内部灰度差和划痕对边界提取造成的影响;引入了模糊理论判别和跟踪边界,模糊边缘检测算法的特点是不需要确定门限值,具有很强的自适应性;最后进行细化去枝得到单像素宽度的晶界。
    关键词:晶界提取 灰度变换 邻域平滑 模糊理论 细化去枝
    在多相晶粒图像分析中常常需提取晶界来进行各种参数的测量和计算。对于简单清晰的图像,可以通过常用的sobel算子、roberts算子、laplace算子等直接处理就能取得较好的效果。但是工程中遇到的大量图像由于材料本身或自然因素的影响,一定程度上都存在着晶粒内部灰度分布不均、边界模糊或划痕,用上述算子直接提取晶界很难获得满意的结果,主要表现在两个方面:(1)晶粒内部产生了许多伪边界,影响了对图像主要停息的研究;(2)部分主要边界丢失,损失较大。本文针对上述情况,提出了一种复杂多相晶粒图像晶界提取的方法,有效地克服了上述缺点,得到了比较理想的晶界。
    1 预处理
    1.1 灰度变换
    对于一幅多相晶粒图像来说常常存在着灰度偏暗、偏亮或居中的情况,如果直接利用灰度的变化检测边界,一些主要边界会因为灰度变化很小而失失。使用幂次变换可以提高感兴趣区域的对比度。幂次变换的基本形式为:
    
    
    
    其中r和s分别为输入灰度级和输出灰度级,c和β为正常数。根据图像的实际情况,调整参数c的取值可以改变图像的灰度动态范围,调整β的取值可以增强图像中感兴趣区域的对比度。在c值不变的情况下,随着β值的变化将简单地得到一族变换曲线,如图1。
    从图1中可以看到,当β>1时该变换把输入窄带暗值映射到宽带输出值,当β<1的值和β<1的值产生的曲线有相反的效果。由于提取的图像的大边界,也就是灰度变化比较明显的各颗粒间的边界,而颗粒内部虽然存在灰度差,但灰度差较小,变化相对平稳,所以可以调节参数c适当压缩图像的灰度动态范围,从而平滑了图像,有利于后面的边界提取。
    
    
    
    1.2 邻域平滑
    1.2.1 中值滤波
    由于晶粒内不同程度地都含有杂质、划痕、灰度发布不均匀的情况,可以选用不同尺度的中值滤波来平滑。中值滤波既能平滑图像,同时又能很好地保护边缘轮廓。但是采用大尺度中值滤波时会产生块状模糊。
    1.2.2 自适应滤波
    经过灰度变换和中值滤波后,若仍然不能得到较满意的平滑图像,可以采用自适应滤波进一步平滑图像。自适应平滑的基本形式为:
    
    
    
    其中,g(i,j)为输入图像,g(i,j)和分别为m×n邻域内局部图像的均值和方差,σ2为整幅图像局部方差的均值,f(i,j)为平滑处理后的输出图像。恢复系数为:
    
    
    
    对于一幅图像σ2是固定的,恢复系数k会随局部统计方差的变化而变化。在图像的平坦区域,相对较小,k值较小,用公式(2)平滑后,是对局部值做较小的恢复,或不恢复(k=0时);而对应于灰度变化较大的区域,σ2(i,j)较大,k值也较大,则对局部值做较大的恢复。这就是自适应平滑原理,代价是存在边缘模糊较应。
    2 模糊检测
    在边缘检测算法中,通常都要事先确定一个灰度阈值,然后把各像素点的灰度值与该阈值比较,大于阈值的像素点被确认为边缘点。如果直接利用某种边缘算子(如sobel算子)检测边缘,存在两个困难:如果取较小的门限值,则得到的边缘点中包含了许多假边缘;如果取较大的门限值,则边缘很不连续。而基于梯度的模糊边缘检测算法可以自动确定门限,消除了由于选取不同的门限而对边缘产生的巨大影响。
    2.1 模糊子集的定义
    当论域为一有限集时,其上的模糊子集f定义为:
    
 &
    
    摘要:提出了一种在多相晶粒图像分析中提取复杂晶界的有效方法。通过预处理消除晶粒内部灰度差和划痕对边界提取造成的影响;引入了模糊理论判别和跟踪边界,模糊边缘检测算法的特点是不需要确定门限值,具有很强的自适应性;最后进行细化去枝得到单像素宽度的晶界。
    关键词:晶界提取 灰度变换 邻域平滑 模糊理论 细化去枝
    在多相晶粒图像分析中常常需提取晶界来进行各种参数的测量和计算。对于简单清晰的图像,可以通过常用的sobel算子、roberts算子、laplace算子等直接处理就能取得较好的效果。但是工程中遇到的大量图像由于材料本身或自然因素的影响,一定程度上都存在着晶粒内部灰度分布不均、边界模糊或划痕,用上述算子直接提取晶界很难获得满意的结果,主要表现在两个方面:(1)晶粒内部产生了许多伪边界,影响了对图像主要停息的研究;(2)部分主要边界丢失,损失较大。本文针对上述情况,提出了一种复杂多相晶粒图像晶界提取的方法,有效地克服了上述缺点,得到了比较理想的晶界。
    1 预处理
    1.1 灰度变换
    对于一幅多相晶粒图像来说常常存在着灰度偏暗、偏亮或居中的情况,如果直接利用灰度的变化检测边界,一些主要边界会因为灰度变化很小而失失。使用幂次变换可以提高感兴趣区域的对比度。幂次变换的基本形式为:
    
    
    
    其中r和s分别为输入灰度级和输出灰度级,c和β为正常数。根据图像的实际情况,调整参数c的取值可以改变图像的灰度动态范围,调整β的取值可以增强图像中感兴趣区域的对比度。在c值不变的情况下,随着β值的变化将简单地得到一族变换曲线,如图1。
    从图1中可以看到,当β>1时该变换把输入窄带暗值映射到宽带输出值,当β<1的值和β<1的值产生的曲线有相反的效果。由于提取的图像的大边界,也就是灰度变化比较明显的各颗粒间的边界,而颗粒内部虽然存在灰度差,但灰度差较小,变化相对平稳,所以可以调节参数c适当压缩图像的灰度动态范围,从而平滑了图像,有利于后面的边界提取。
    
    
    
    1.2 邻域平滑
    1.2.1 中值滤波
    由于晶粒内不同程度地都含有杂质、划痕、灰度发布不均匀的情况,可以选用不同尺度的中值滤波来平滑。中值滤波既能平滑图像,同时又能很好地保护边缘轮廓。但是采用大尺度中值滤波时会产生块状模糊。
    1.2.2 自适应滤波
    经过灰度变换和中值滤波后,若仍然不能得到较满意的平滑图像,可以采用自适应滤波进一步平滑图像。自适应平滑的基本形式为:
    
    
    
    其中,g(i,j)为输入图像,g(i,j)和分别为m×n邻域内局部图像的均值和方差,σ2为整幅图像局部方差的均值,f(i,j)为平滑处理后的输出图像。恢复系数为:
    
    
    
    对于一幅图像σ2是固定的,恢复系数k会随局部统计方差的变化而变化。在图像的平坦区域,相对较小,k值较小,用公式(2)平滑后,是对局部值做较小的恢复,或不恢复(k=0时);而对应于灰度变化较大的区域,σ2(i,j)较大,k值也较大,则对局部值做较大的恢复。这就是自适应平滑原理,代价是存在边缘模糊较应。
    2 模糊检测
    在边缘检测算法中,通常都要事先确定一个灰度阈值,然后把各像素点的灰度值与该阈值比较,大于阈值的像素点被确认为边缘点。如果直接利用某种边缘算子(如sobel算子)检测边缘,存在两个困难:如果取较小的门限值,则得到的边缘点中包含了许多假边缘;如果取较大的门限值,则边缘很不连续。而基于梯度的模糊边缘检测算法可以自动确定门限,消除了由于选取不同的门限而对边缘产生的巨大影响。
    2.1 模糊子集的定义
    当论域为一有限集时,其上的模糊子集f定义为:
    
 &