一种薄膜电路故障的自动检测系统
发布时间:2008/5/27 0:00:00 访问次数:535
一种薄膜电路故障的自动检测系统 摘 要: 自动视觉检测系统利用了数字图像处理技术,是一种高速、准确、无损的方法,目前得到了广泛的应用。概述了这一领域的研究成果,并根据多层薄膜电路的实际情况,提出了一种参考和非参考比较相结合的故障检测与分类方法,并以此为基础构造了一个微机实时检测系统。
关键词: 薄膜电路 参考比较 非参考比较
电路制造技术正朝着将更多的集成电路安装在一块pcb电路板上的方向发展,从而使pcb的尺寸增大、层数增多;同时,电路板本身也变得越来越小、越来越复杂。由于这些原因,生产及更换它们的成本也越来越高。所以,需要相应的质量控制手段,使每一层上的线路都能够在上一层铺设之前被检查。在这里,自动视觉检测能够以相对较小的代价发现许多致命的错误,因而发展非常迅速。
1 电路板故障检测研究的发展状况
在pcb及其它相近的线路板如薄膜电路的故障检测方面,人们进行了大量的研究工作,并形成了一些应用系统。它们多是基于图像处理的自动视觉检测,其硬件部分包括:机械装置、照明系统、摄像头、图像采集卡、图像处理器、计算机等;软件部分:主要是进行控制和图像的处理。系统工作流程如图1所示。
近年来,出现了很多电路检测算法,在m,madhav和f.ercal发表的综述[1]中,它们大致可分为3类:参考算法、非参考算法以及混合算法。
参考算法使用待测电路板的全部信息,一般是先将标准图像(可以是无故障的图像或是设计时的cad版图)与待测图像进行比较,也称为逐象素比较。其中最直接的是将两幅图像进行xor运算,这是速度最快的一种方法,并且易于用硬件实现。但是它也有一些缺点,例如对光照和定位的要求比较高、所需的存储空间较大、难以分类等等。
非参考算法并不需要所谓标准图像的信息,它是基于一定的设计规则的。例如,可以假设正常的线路都具有规则的几何形状,而存在故障则意味着其外形不规则。另外还可以根据线路的特征如最大和最小线宽、最大和最小焊盘半径来进行判断。常用的方法是图像通过编码来获得边缘信息,例如使用链码或游程编码。对于非参考方法而言,它主要的优点是提高了运算速度,降低了存储空间;但是,它的缺点也是显而易见的,即只能检测那些违反设计规则的故障,并且要求有一个标准的导线类型。对于某些不违反规则的情况,例如和正常线路形状相似的短路线,可能就无法判断。非参考方法在检测全局性的故障方面也存在一些缺欠。而参考方法则容易漏掉一些微小的错误。图2表示了它们和故障尺寸的关系。所谓的混合方法综合了参考和非参考方法的优点,以求达到更高的检测率。
mandeville[2]提出了一种所谓的通用方法,它的基本思路是通过腐蚀、膨胀、细化等图像变换手段生成骨架图像,从中可以方便地检测出电路特征,从而形成特征表。将标准与待测图像的特征表进行比较,其中如有冲突的元素,那么就隐含着故障。实际上,在这种方法中需要进行大量的形态学运算,而且,对于每一种故障类型,都定义了自己的一种运算方法,所以计算量很大,难以达到实时要求。另外,还有的方法将整个电路划分为许多小的子模块,然后对相应位置的模块进行匹配,但它们的缺点是对每一种电路版图都需要进行学习,可移植性不好[3]。
2 针对薄膜电路提出的检测算法
所谓薄膜集成电路即是采用真空沉积技术,也可辅以其它沉积技术形成膜的集成电路[4]。薄膜电路检测的方法与一般pcb相似。但是,它也有自己的特点(如图3)。由于它的尺寸较小,只能通过显微镜分区域放大后由摄像头成像,因此对于检测区域的精确定位就显得非常重要。由于电路的电气特性与尺寸密切参考,所以,线条的尺寸不是固定的。其中较窄一些的称为金属化线条,较宽一些的称为金属化键合区。由于线条尺寸存在多样性,故而利用简单的非参考方
一种薄膜电路故障的自动检测系统 摘 要: 自动视觉检测系统利用了数字图像处理技术,是一种高速、准确、无损的方法,目前得到了广泛的应用。概述了这一领域的研究成果,并根据多层薄膜电路的实际情况,提出了一种参考和非参考比较相结合的故障检测与分类方法,并以此为基础构造了一个微机实时检测系统。
关键词: 薄膜电路 参考比较 非参考比较
电路制造技术正朝着将更多的集成电路安装在一块pcb电路板上的方向发展,从而使pcb的尺寸增大、层数增多;同时,电路板本身也变得越来越小、越来越复杂。由于这些原因,生产及更换它们的成本也越来越高。所以,需要相应的质量控制手段,使每一层上的线路都能够在上一层铺设之前被检查。在这里,自动视觉检测能够以相对较小的代价发现许多致命的错误,因而发展非常迅速。
1 电路板故障检测研究的发展状况
在pcb及其它相近的线路板如薄膜电路的故障检测方面,人们进行了大量的研究工作,并形成了一些应用系统。它们多是基于图像处理的自动视觉检测,其硬件部分包括:机械装置、照明系统、摄像头、图像采集卡、图像处理器、计算机等;软件部分:主要是进行控制和图像的处理。系统工作流程如图1所示。
近年来,出现了很多电路检测算法,在m,madhav和f.ercal发表的综述[1]中,它们大致可分为3类:参考算法、非参考算法以及混合算法。
参考算法使用待测电路板的全部信息,一般是先将标准图像(可以是无故障的图像或是设计时的cad版图)与待测图像进行比较,也称为逐象素比较。其中最直接的是将两幅图像进行xor运算,这是速度最快的一种方法,并且易于用硬件实现。但是它也有一些缺点,例如对光照和定位的要求比较高、所需的存储空间较大、难以分类等等。
非参考算法并不需要所谓标准图像的信息,它是基于一定的设计规则的。例如,可以假设正常的线路都具有规则的几何形状,而存在故障则意味着其外形不规则。另外还可以根据线路的特征如最大和最小线宽、最大和最小焊盘半径来进行判断。常用的方法是图像通过编码来获得边缘信息,例如使用链码或游程编码。对于非参考方法而言,它主要的优点是提高了运算速度,降低了存储空间;但是,它的缺点也是显而易见的,即只能检测那些违反设计规则的故障,并且要求有一个标准的导线类型。对于某些不违反规则的情况,例如和正常线路形状相似的短路线,可能就无法判断。非参考方法在检测全局性的故障方面也存在一些缺欠。而参考方法则容易漏掉一些微小的错误。图2表示了它们和故障尺寸的关系。所谓的混合方法综合了参考和非参考方法的优点,以求达到更高的检测率。
mandeville[2]提出了一种所谓的通用方法,它的基本思路是通过腐蚀、膨胀、细化等图像变换手段生成骨架图像,从中可以方便地检测出电路特征,从而形成特征表。将标准与待测图像的特征表进行比较,其中如有冲突的元素,那么就隐含着故障。实际上,在这种方法中需要进行大量的形态学运算,而且,对于每一种故障类型,都定义了自己的一种运算方法,所以计算量很大,难以达到实时要求。另外,还有的方法将整个电路划分为许多小的子模块,然后对相应位置的模块进行匹配,但它们的缺点是对每一种电路版图都需要进行学习,可移植性不好[3]。
2 针对薄膜电路提出的检测算法
所谓薄膜集成电路即是采用真空沉积技术,也可辅以其它沉积技术形成膜的集成电路[4]。薄膜电路检测的方法与一般pcb相似。但是,它也有自己的特点(如图3)。由于它的尺寸较小,只能通过显微镜分区域放大后由摄像头成像,因此对于检测区域的精确定位就显得非常重要。由于电路的电气特性与尺寸密切参考,所以,线条的尺寸不是固定的。其中较窄一些的称为金属化线条,较宽一些的称为金属化键合区。由于线条尺寸存在多样性,故而利用简单的非参考方
上一篇:AD7714在压力测量中的应用
上一篇:钢琴琴键排列平整性的测量