CCM模式的原因是反向降压拓扑的功率开关与地线相连
发布时间:2022/7/29 20:56:53 访问次数:313
双向检流放大器具有内部基准,例如:MAX4081具有1.5V基准,能够将输出测量电压偏置在1.5V,这样,输入差分电压为零时,输出为1.5V±VOS,引入误差。
1.5V电压高于放大器的VOL,不会影响误差分析。可通过测量输出电压与1.5V理论电压之差计算得到VOS误差。但是,这种方法有一个缺点:降低了动态范围。对于0至5V输入动态范围的ADC器件,动态范围降低了30%,输出范围为1.5V至5V。
这种方法需要使用价格较高的双向检流放大器,用于单向测量.利用一个低漂移1.5V基准或额外的一个通道的目的只是为了测量该1.5V基准电压,设计人员很难接受这种方案。
为便于生产,校准的方案是:在负载电流为零(零输入差分电压)时测量VOS。可以测量输出VOS并在以后的测量数据中减去该电压。不幸的是这种方法存在一个缺点,由于VOL (输出电压)和输入VOS相互影响,输出电压可能无法地反映输入VOS。所有单电源供电放大器均存在这一问题。
以增益为20的MAX4080T为例,并假设输入VOS为零,此时放大器输出的测量值应该为零。而实际情况是:即使在零输入差分电压下,放大器也不能保证输出电压低于15mV (10μA吸电流)。如果直接把测量到输出电压用于VOS校准,放大器的输入VOS为0.75mV (15mV/20=0.75mV)。
反向降压拓扑的模式为连续导通模式(CCM),选择CCM模式的原因是反向降压拓扑的功率开关与地线相连,而不是像标准降压拓扑那样连接上桥臂开关。
因此,在这个解决方案中,可直接使用微控制器驱动一个逻辑电平(5V)或超逻辑电平(3.3V)功率开关,无需任何栅极驱动级,这使总体解决方案变得简单且成本低廉。
灵活性是这个解决方案的研发目的,从低功率、低压到大功率、高压,该解决方案可单独驱动多16个输出通 道。拥有街道照明专用产品组合,因此,该解决方案让设计人员只使用一个拓扑就能覆盖各种不同的LED驱动系统。
双向检流放大器具有内部基准,例如:MAX4081具有1.5V基准,能够将输出测量电压偏置在1.5V,这样,输入差分电压为零时,输出为1.5V±VOS,引入误差。
1.5V电压高于放大器的VOL,不会影响误差分析。可通过测量输出电压与1.5V理论电压之差计算得到VOS误差。但是,这种方法有一个缺点:降低了动态范围。对于0至5V输入动态范围的ADC器件,动态范围降低了30%,输出范围为1.5V至5V。
这种方法需要使用价格较高的双向检流放大器,用于单向测量.利用一个低漂移1.5V基准或额外的一个通道的目的只是为了测量该1.5V基准电压,设计人员很难接受这种方案。
为便于生产,校准的方案是:在负载电流为零(零输入差分电压)时测量VOS。可以测量输出VOS并在以后的测量数据中减去该电压。不幸的是这种方法存在一个缺点,由于VOL (输出电压)和输入VOS相互影响,输出电压可能无法地反映输入VOS。所有单电源供电放大器均存在这一问题。
以增益为20的MAX4080T为例,并假设输入VOS为零,此时放大器输出的测量值应该为零。而实际情况是:即使在零输入差分电压下,放大器也不能保证输出电压低于15mV (10μA吸电流)。如果直接把测量到输出电压用于VOS校准,放大器的输入VOS为0.75mV (15mV/20=0.75mV)。
反向降压拓扑的模式为连续导通模式(CCM),选择CCM模式的原因是反向降压拓扑的功率开关与地线相连,而不是像标准降压拓扑那样连接上桥臂开关。
因此,在这个解决方案中,可直接使用微控制器驱动一个逻辑电平(5V)或超逻辑电平(3.3V)功率开关,无需任何栅极驱动级,这使总体解决方案变得简单且成本低廉。
灵活性是这个解决方案的研发目的,从低功率、低压到大功率、高压,该解决方案可单独驱动多16个输出通 道。拥有街道照明专用产品组合,因此,该解决方案让设计人员只使用一个拓扑就能覆盖各种不同的LED驱动系统。