位置:51电子网 » 技术资料 » 新品发布

减弱电压瞬变和电流瞬变

发布时间:2020/7/24 22:57:03 访问次数:1118

开关电源中的功率半导体器件的开关频率较高(从几十kHz到数MHz),功率开关管的高速开关动作,不可避免地导致严重的EMI。与此同时,现代开关电源的功率密度急剧提高,电源内部的电磁环境越来越复杂,在电源系统内有多个子系统的场合,多个子系统电源之间的电磁兼容问题就更加的突出。因此,为了提高大功率逆变器的抗干扰性及可靠性,必须重视电源系统的电磁兼容性设计。


高频开关电源中,由于功率半导体器件的高速开关形成的电流瞬变、电压瞬变(di/dt和dv/dt)是不可避免的电磁噪声源。通过对开关电源的电磁兼容分析表明:减弱噪声源,切断或削弱EMI传播途径,降低易受干扰电路的电磁敏感程度是提高开关电源EMC的关键。

电流瞬变的di/dt和电压瞬变的dv/dt由于来源和干扰途径不同,产生的噪声对电源的影响方式也不相同,主要包括2个方面。

电磁场辐射耦合可分为共模(commonmode或CM)辐射和差模(differential mode或DM)辐射两部分:

差模辐射耦合其来源主要是瞬变电流的di/dt,耦合途径为两电路之间的寄生磁耦合电感M。当开关电源用于低压大电流场合,情况更为恶劣,有数据表明[2],di/dt典型值可达250×106A/s。而这种电流的瞬变将通过寄生耦合电感M,以磁耦合的方式在其相邻电路上形成一个感生电压e。

共模辐射耦合其来源主要是瞬变电压的dv/dt,耦合途径是两电路间的分布电容C。与di/dt类似,dv/dt要远大于开关动作水平。在开关电源应用于高压小电流场合情况更为恶劣,dv/dt典型值[2]可达到10×109V/s。电压的瞬变通过寄生耦合电容在其相邻电路形成感生电流i。也就是说,感生电流,其源是高频电场,可以为任何电气节点或者电路元器件上存在的电压瞬变。同样,这种节点或元器件对大地E之间存在寄生电容Cd,感生出的共模电流通过Cd流向大地,并最终流经电源输入端内阻形成环路。

由元器件或电路布线中寄生参数形成的电感性和电容性直接传导耦合均属于近场电磁场辐射耦合,大都可归结为以上两种类型。

公共阻抗传导耦合两电路(m和n)之间存在有公共阻抗时,回路m上传导电流的变化将会引起回路n电压变化。公共阻抗包括设备安全地和接地网络中的公共阻抗(公共阻抗主要是公共电阻以及电气连线的寄生电感)。

高频谐波及瞬态噪声,主要以传导耦合方式进入开关电源并对电路正常工作进行干扰,通常也被称为瞬态干扰。

瞬态干扰表现为交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大,多在时域范围内对其描述和分析。在国际电工委员会制定的标准中,浪涌电压和振铃电压典型值峰值[5]为Vp=3000V。如果耦合到输入滤波电容,超过MOSFET源、漏极额定耐压值VDS(limit),将会击穿MOS管或者通过变压器耦合到输出端造成其他危害。

大功率逆变器的一个子系统,辅助电源还会受到逆变器主功率电路发出的高频电磁噪声辐射。辐射能量很可能通过多种途径进入辅助电源,干扰电路正常工作。

反激式多路输出电源电磁干扰以及电源包括两组子系统的特点,EMC设计应贯穿于实验、设计、调试的始终,包括项目设计前预先考虑到的措施,实验中遇到问题后有针对性地采取的措施,以及经过比较的其它方案。

减弱差模辐射耦耦合途径为寄生磁耦合电感M通过干扰源产生的噪声磁场与被干扰回路发生磁通铰链而形成。设噪声磁场的磁通密度为B,穿过一个闭合面积为S的回路,则在该回路感生出干扰电压e,即

电源输出端至负载的引线应尽可能地短,而且多路输出每一路都要使用双绞线,相邻绞环中在同一导体上产生的电动势方向相反,相互抵消,这对电磁干扰起到较好的抑制作用。

共模电流Icm1及Icm2的幅值与两电气节点①与②处dv/dt和对PE(安全地)的分布电容Cd1和Cd2的积成正比。图中节点①是MOS管漏极与变压器原边的连接点,节点②为变压器二次侧与输出二极管的连接点。共模电流辐射强度与共模电流围绕回路面积有关,也就是说,电磁辐射强度和电流环路面积成正比,这里环路面积用阴影面积表示。减弱共模辐射耦合应从3个方面入手,即减小dv/dt;减小分布电容;减小共模电流环路面积。

装在MOS管上的散热器由于表面积很大,其对节点①的分布电容必须考虑。由图4可知,采用屏蔽方法将铜箔夹在散热器和MOS管之间,使原有分布电容Ck变成相互串联的Ck1和Ck2,从而减小了分布电容。散热器和变压器磁芯同样存在电压瞬变,将散热器和磁芯屏蔽分别就近与节点③及④连接,用以抑制散热器和磁芯的电压瞬变,并缩短共模电流的耦合路径。

(素材来源:21ic.如涉版权请联系删除。特别感谢)

http://ytf02.51dzw.com




开关电源中的功率半导体器件的开关频率较高(从几十kHz到数MHz),功率开关管的高速开关动作,不可避免地导致严重的EMI。与此同时,现代开关电源的功率密度急剧提高,电源内部的电磁环境越来越复杂,在电源系统内有多个子系统的场合,多个子系统电源之间的电磁兼容问题就更加的突出。因此,为了提高大功率逆变器的抗干扰性及可靠性,必须重视电源系统的电磁兼容性设计。


高频开关电源中,由于功率半导体器件的高速开关形成的电流瞬变、电压瞬变(di/dt和dv/dt)是不可避免的电磁噪声源。通过对开关电源的电磁兼容分析表明:减弱噪声源,切断或削弱EMI传播途径,降低易受干扰电路的电磁敏感程度是提高开关电源EMC的关键。

电流瞬变的di/dt和电压瞬变的dv/dt由于来源和干扰途径不同,产生的噪声对电源的影响方式也不相同,主要包括2个方面。

电磁场辐射耦合可分为共模(commonmode或CM)辐射和差模(differential mode或DM)辐射两部分:

差模辐射耦合其来源主要是瞬变电流的di/dt,耦合途径为两电路之间的寄生磁耦合电感M。当开关电源用于低压大电流场合,情况更为恶劣,有数据表明[2],di/dt典型值可达250×106A/s。而这种电流的瞬变将通过寄生耦合电感M,以磁耦合的方式在其相邻电路上形成一个感生电压e。

共模辐射耦合其来源主要是瞬变电压的dv/dt,耦合途径是两电路间的分布电容C。与di/dt类似,dv/dt要远大于开关动作水平。在开关电源应用于高压小电流场合情况更为恶劣,dv/dt典型值[2]可达到10×109V/s。电压的瞬变通过寄生耦合电容在其相邻电路形成感生电流i。也就是说,感生电流,其源是高频电场,可以为任何电气节点或者电路元器件上存在的电压瞬变。同样,这种节点或元器件对大地E之间存在寄生电容Cd,感生出的共模电流通过Cd流向大地,并最终流经电源输入端内阻形成环路。

由元器件或电路布线中寄生参数形成的电感性和电容性直接传导耦合均属于近场电磁场辐射耦合,大都可归结为以上两种类型。

公共阻抗传导耦合两电路(m和n)之间存在有公共阻抗时,回路m上传导电流的变化将会引起回路n电压变化。公共阻抗包括设备安全地和接地网络中的公共阻抗(公共阻抗主要是公共电阻以及电气连线的寄生电感)。

高频谐波及瞬态噪声,主要以传导耦合方式进入开关电源并对电路正常工作进行干扰,通常也被称为瞬态干扰。

瞬态干扰表现为交流电网上出现的浪涌电压、振铃电压、火花放电等瞬间干扰信号,其特点是作用时间极短,但电压幅度高、瞬态能量大,多在时域范围内对其描述和分析。在国际电工委员会制定的标准中,浪涌电压和振铃电压典型值峰值[5]为Vp=3000V。如果耦合到输入滤波电容,超过MOSFET源、漏极额定耐压值VDS(limit),将会击穿MOS管或者通过变压器耦合到输出端造成其他危害。

大功率逆变器的一个子系统,辅助电源还会受到逆变器主功率电路发出的高频电磁噪声辐射。辐射能量很可能通过多种途径进入辅助电源,干扰电路正常工作。

反激式多路输出电源电磁干扰以及电源包括两组子系统的特点,EMC设计应贯穿于实验、设计、调试的始终,包括项目设计前预先考虑到的措施,实验中遇到问题后有针对性地采取的措施,以及经过比较的其它方案。

减弱差模辐射耦耦合途径为寄生磁耦合电感M通过干扰源产生的噪声磁场与被干扰回路发生磁通铰链而形成。设噪声磁场的磁通密度为B,穿过一个闭合面积为S的回路,则在该回路感生出干扰电压e,即

电源输出端至负载的引线应尽可能地短,而且多路输出每一路都要使用双绞线,相邻绞环中在同一导体上产生的电动势方向相反,相互抵消,这对电磁干扰起到较好的抑制作用。

共模电流Icm1及Icm2的幅值与两电气节点①与②处dv/dt和对PE(安全地)的分布电容Cd1和Cd2的积成正比。图中节点①是MOS管漏极与变压器原边的连接点,节点②为变压器二次侧与输出二极管的连接点。共模电流辐射强度与共模电流围绕回路面积有关,也就是说,电磁辐射强度和电流环路面积成正比,这里环路面积用阴影面积表示。减弱共模辐射耦合应从3个方面入手,即减小dv/dt;减小分布电容;减小共模电流环路面积。

装在MOS管上的散热器由于表面积很大,其对节点①的分布电容必须考虑。由图4可知,采用屏蔽方法将铜箔夹在散热器和MOS管之间,使原有分布电容Ck变成相互串联的Ck1和Ck2,从而减小了分布电容。散热器和变压器磁芯同样存在电压瞬变,将散热器和磁芯屏蔽分别就近与节点③及④连接,用以抑制散热器和磁芯的电压瞬变,并缩短共模电流的耦合路径。

(素材来源:21ic.如涉版权请联系删除。特别感谢)

http://ytf02.51dzw.com




热门点击

 

推荐技术资料

自制智能型ICL7135
    表头使ff11CL7135作为ADC,ICL7135是... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!