位置:51电子网 » 技术资料 » 显示光电

μPD3575D CCD图像传感器的原理及应用

发布时间:2007/8/20 0:00:00 访问次数:542

来源:国外电子元器件  作者:纪淑波 刘 晶 任凤飞

    摘要:μPD3575D是NEC公司生产的一种高灵敏度、低暗电流、1024像元的内置采样保持电路和放大电路的线阵CCD图像传感器。文章介绍了μPD3575D的主要特点、结构原理、引脚功能、光学/电子特性、驱动时序以及驱动电路。
    关键词:μPD3575D CCD 驱动脉冲 图像传感器

  1 概述

    μPD3575D是NEC公司生产的一种高灵敏度、低暗电流、1024像元的内置采样保持电路和放大电路的线阵CCD图像传感器。该传感器可用于传真、图像扫描和OCR。它内部包含一列1024像元的光敏二极管和两列525位CCD电荷转移寄存器。该器件可工作在5V驱动(脉冲)和12V电源条件下。

    

    μPD3575D的主要特性如下:

    *像敏单元数目:1024像元;

    *像敏单元大小:14μm×14μm×14μm(相邻像元中心距为14μm);

    *光敏区域:采用高灵敏度和低暗电流PN结作为光敏单元;

    *时钟:二相(5V);

    *内部电路:采样保持电路,输出放大电路;

    *封装形式:20脚DIP封装。

  2 内部原理和引脚功能

    μPD3575D的封装形式为20脚DIP封装,其引脚排列如图1所示,引脚功能如表1所列。图2为μPD3575D的内部结构原理图,中间一排是由多个光敏二极管构成的光敏阵列,有效单元为1024位,它们的作用是接收照射到CCD硅片的光,并将之转化成电荷信号,光敏阵列的两侧为转移栅和模拟寄存器。在传输门时钟φTG的作用下,像元的光电信号分别转移到两侧的CCD转移栅。然后CCD的MOS电容中的电荷信号在φIO的作用下串行从输出端口输出。上述驱动脉冲由专门的驱动电路产生。

    表1 μPD3575D的引脚功能

    3 光电特性参数

    μPD3575D的光学/电子特性参数如表2所列。表中的工作条件为:温度在25℃左右,工作电压VOD=VRD=VGC=12V,频率fSHO为0.5MHz,tint(积分时间)=10ms,光源为2856K的钨丝灯。

  表2 光/电子特性参数

    其中,饱和输出电压Vout为响应曲线失支直线形时的输出信号电压;饱和曝光量SE为输出饱和时的照度(lx)和积累时间的乘积。

    输出电压不均匀性PRNU是取全部有效位输出电压的峰、谷之比值。平均暗电流ADS指的是遮光时的平均输出电流。暗信号不均匀性DSNU是遮光时的全部有效像元的输出电压最大或最小值与ADS的差。输出阻抗Zo为从外部看时输出端子的阻抗。响应度R是曝光量除以输出电压的值。值得注意的是:使用其它光源时,器件的响应度会有所变化。

    

    4 驱动时序

    CCD的驱动需要四路脉冲,分别为转移栅时钟φIO、复位时钟φRO、采样保持时钟φSHO和传输门时钟φTG,将它们分别输入到CCD芯片的2脚、3脚、4脚和8脚,并在相应的管脚接上相应的电压就可以实现对CCD的驱动。

    实现对CCD驱动的关键工作是如何产生以上的四路波形。图3是该四路时序波形图。

    四路脉冲的作用描述如下:当传输门时钟φTG脉冲高电平到来时,正遇到φIO电极下形成深势阱,同时φTG的高电平使φIO电极下的深势阱与CMOS电容存储势阱(存储栅)沟通。于是CMS电容中的信号电荷包全部转移到φIO电极下的势阱中。当φTG变低时,φTG低电平形式的浅势阱将存储栅下势阱与φIO电极下的势阱离开,存储栅势阱进入光积分状态,而转移栅则在转移栅时钟φIO脉冲作用下使转移到φIO电极下势阱中的信号电荷逐位转称,并经过输出电路输出。采样保持时钟φSHO的作用是去掉输出信号中的调幅脉冲成分,使输出脉冲的幅度直接反映像敏单元的照度。

    从以上描述和对波形的分析可以看出,复位脉冲φRO每触发一次,φIO脉冲翻转一次,并转移一个像元的信号电荷,因此φIO脉冲的周期为φRO的2倍。采样保持时间φSHO的周期和φRO的周期相同,但相位有一定的时间延迟。传输门时钟φTG脉冲控制线阵CCD整行的转移时间间隔,可作为行同步脉冲,其低电平持续的时间为φIO的整数倍,倍数由CCD的像元数决定

来源:国外电子元器件  作者:纪淑波 刘 晶 任凤飞

    摘要:μPD3575D是NEC公司生产的一种高灵敏度、低暗电流、1024像元的内置采样保持电路和放大电路的线阵CCD图像传感器。文章介绍了μPD3575D的主要特点、结构原理、引脚功能、光学/电子特性、驱动时序以及驱动电路。
    关键词:μPD3575D CCD 驱动脉冲 图像传感器

  1 概述

    μPD3575D是NEC公司生产的一种高灵敏度、低暗电流、1024像元的内置采样保持电路和放大电路的线阵CCD图像传感器。该传感器可用于传真、图像扫描和OCR。它内部包含一列1024像元的光敏二极管和两列525位CCD电荷转移寄存器。该器件可工作在5V驱动(脉冲)和12V电源条件下。

    

    μPD3575D的主要特性如下:

    *像敏单元数目:1024像元;

    *像敏单元大小:14μm×14μm×14μm(相邻像元中心距为14μm);

    *光敏区域:采用高灵敏度和低暗电流PN结作为光敏单元;

    *时钟:二相(5V);

    *内部电路:采样保持电路,输出放大电路;

    *封装形式:20脚DIP封装。

  2 内部原理和引脚功能

    μPD3575D的封装形式为20脚DIP封装,其引脚排列如图1所示,引脚功能如表1所列。图2为μPD3575D的内部结构原理图,中间一排是由多个光敏二极管构成的光敏阵列,有效单元为1024位,它们的作用是接收照射到CCD硅片的光,并将之转化成电荷信号,光敏阵列的两侧为转移栅和模拟寄存器。在传输门时钟φTG的作用下,像元的光电信号分别转移到两侧的CCD转移栅。然后CCD的MOS电容中的电荷信号在φIO的作用下串行从输出端口输出。上述驱动脉冲由专门的驱动电路产生。

    表1 μPD3575D的引脚功能

    3 光电特性参数

    μPD3575D的光学/电子特性参数如表2所列。表中的工作条件为:温度在25℃左右,工作电压VOD=VRD=VGC=12V,频率fSHO为0.5MHz,tint(积分时间)=10ms,光源为2856K的钨丝灯。

  表2 光/电子特性参数

    其中,饱和输出电压Vout为响应曲线失支直线形时的输出信号电压;饱和曝光量SE为输出饱和时的照度(lx)和积累时间的乘积。

    输出电压不均匀性PRNU是取全部有效位输出电压的峰、谷之比值。平均暗电流ADS指的是遮光时的平均输出电流。暗信号不均匀性DSNU是遮光时的全部有效像元的输出电压最大或最小值与ADS的差。输出阻抗Zo为从外部看时输出端子的阻抗。响应度R是曝光量除以输出电压的值。值得注意的是:使用其它光源时,器件的响应度会有所变化。

    

    4 驱动时序

    CCD的驱动需要四路脉冲,分别为转移栅时钟φIO、复位时钟φRO、采样保持时钟φSHO和传输门时钟φTG,将它们分别输入到CCD芯片的2脚、3脚、4脚和8脚,并在相应的管脚接上相应的电压就可以实现对CCD的驱动。

    实现对CCD驱动的关键工作是如何产生以上的四路波形。图3是该四路时序波形图。

    四路脉冲的作用描述如下:当传输门时钟φTG脉冲高电平到来时,正遇到φIO电极下形成深势阱,同时φTG的高电平使φIO电极下的深势阱与CMOS电容存储势阱(存储栅)沟通。于是CMS电容中的信号电荷包全部转移到φIO电极下的势阱中。当φTG变低时,φTG低电平形式的浅势阱将存储栅下势阱与φIO电极下的势阱离开,存储栅势阱进入光积分状态,而转移栅则在转移栅时钟φIO脉冲作用下使转移到φIO电极下势阱中的信号电荷逐位转称,并经过输出电路输出。采样保持时钟φSHO的作用是去掉输出信号中的调幅脉冲成分,使输出脉冲的幅度直接反映像敏单元的照度。

    从以上描述和对波形的分析可以看出,复位脉冲φRO每触发一次,φIO脉冲翻转一次,并转移一个像元的信号电荷,因此φIO脉冲的周期为φRO的2倍。采样保持时间φSHO的周期和φRO的周期相同,但相位有一定的时间延迟。传输门时钟φTG脉冲控制线阵CCD整行的转移时间间隔,可作为行同步脉冲,其低电平持续的时间为φIO的整数倍,倍数由CCD的像元数决定

相关IC型号

热门点击

 

推荐技术资料

按钮与灯的互动实例
    现在赶快去看看这个目录卞有什么。FGA15N120AN... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!