位置:51电子网 » 技术资料 » 通信网络

4G系统中多天线技术

发布时间:2008/8/21 0:00:00 访问次数:378

  一、引言

  由于第三代移动通信系统(3g)还存在一些不足,包括很难达到较高的通信速率,提供服务速率的动态范围不大,不能满足各种业务类型要求,以及分配给3g系统的频率资源已经趋于饱和等,于是人们提出了第四代移动通信系统(4g)的构想。4g的关键技术包括:

  (1)调制和信号传输技术(ofdm">ofdm);

  (2)先进的信道编码方式(turbo码和ldpc);

  (3)多址接入方案(mc-cdma和fh-ofcdma);

  (4)软件无线电技术;

  (5)mimo和智能天线技术;

  (6)基于公共ip网的开放结构。

  研究表明,在基于cdma技术的3g中使用多天线技术能够有效降低多址干扰,空时处理能够极大增加cdma系统容量。凭在提高频谱利用率方面的卓越表现,mimo和智能天线成为4g发展中炙手可热的课题。

  二、智能天线技术

  智能天线最初用于雷达、声纳及军事通信领域。使用智能天线可以在不显著增加系统复杂程度的情况下满足服务质量和扩充容量的需要。

  1.基本原理和结构

  智能天线利用数字信号处理技术,采用先进的波束转换技术(switchedbeamtechnology)和自适应空间数字处理技术(adaptivespatial digital processing technology),判断有用信号到达方向(doa)通过选择适当的合并权值,在此方向上形成天线主波束,同时将低增益旁瓣或零陷对准干扰信号方向。在发射时,能使期望用户的接收信号功率最大化,同时使窄波束照射范围外的非期望用户受到的干扰最小,甚至为零。

  智能天线引入空分多址(sdma)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号空间传播路径的不同而区分。实际应用中,天线阵多采用均匀线阵或均匀圆阵。智能天线系统由天线阵;波束成形成网络;自适应算法控制三部分组成.

  2.智能天线的分类

  智能天线主要分为波束转换智能天线(switchedbeamantenna)和自适应阵列智能天线(adaptivearray antenna)。

  (1)波束转换智能天线波束转换智能天线具有有限数目的、固定的、预定义的方向图,它利用多个并行窄波束(15°~30°水平波束宽度)覆盖整个用户区,每个波束的指向是固定的,波束宽度也随天线元的数目而确定(见图2)。波束转换系统实现比较经济,与自适应天线相比结构简单,无需迭代,响应快、鲁棒性好。但预先设计好的工作模式有限,窄波束的特性将极大地影响系统性能。

  (2)自适应阵列智能天线

  自适应阵列智能天线实时地对用户到达方向(doa)进行估计,在此方向上形成主波束,同时使旁瓣或零陷对准干扰方向。自适应天线阵列一般采用4~16天线阵元结构,阵元间距为1/2波长(若阵元间距过大会使接收信号彼此相关程度降低,太小则会在方向图形成不必要的栅瓣,可能放大噪声或干扰)。图3对自适应阵列智能天线与波束转换智能天线进行了比较。

  3.智能天线的自适应波束成形技术

  智能天线技术研究的核心是自适应算法,可分为盲算法、半盲算法和非盲算法。

  非盲算法需借助参考信号,对接收到的预先知道的参考信号进行处理可以确定出信道响应,再按一定准则(如迫零准则)确定各加权值,或者直接根据某一准则自适应地调整权值(即算法模型的抽头系数)。常用的准则有最小均方误差mmse(minimummeansquareerror)、最小均方lms (least mean square)和递归最小二乘等;而自适应调整则采取最优化方法,最常见的是最陡梯度下降法。

  盲算法无须参考信号或导频信号,它充分利用调制信号本身固有的、与具体承载信息比特无关的一些特征(如恒包络、子空间、有限符号集、循环平稳等)来调整权值,以使输出误差尽量小。常见的算法有常数模算法cma(constantmodulearithmetic)、子空间算法、判决反馈算法等。

  非盲算法相对盲算法而言,通常误差较小,收敛速度也较快,但发送参考信号浪费了一定的系统带宽。为此,又发展了半盲算法,即先用非盲算法确定初始权值,再用盲算法进行跟踪和调整。

  欲知详情,请登录维库

  一、引言

  由于第三代移动通信系统(3g)还存在一些不足,包括很难达到较高的通信速率,提供服务速率的动态范围不大,不能满足各种业务类型要求,以及分配给3g系统的频率资源已经趋于饱和等,于是人们提出了第四代移动通信系统(4g)的构想。4g的关键技术包括:

  (1)调制和信号传输技术(ofdm">ofdm);

  (2)先进的信道编码方式(turbo码和ldpc);

  (3)多址接入方案(mc-cdma和fh-ofcdma);

  (4)软件无线电技术;

  (5)mimo和智能天线技术;

  (6)基于公共ip网的开放结构。

  研究表明,在基于cdma技术的3g中使用多天线技术能够有效降低多址干扰,空时处理能够极大增加cdma系统容量。凭在提高频谱利用率方面的卓越表现,mimo和智能天线成为4g发展中炙手可热的课题。

  二、智能天线技术

  智能天线最初用于雷达、声纳及军事通信领域。使用智能天线可以在不显著增加系统复杂程度的情况下满足服务质量和扩充容量的需要。

  1.基本原理和结构

  智能天线利用数字信号处理技术,采用先进的波束转换技术(switchedbeamtechnology)和自适应空间数字处理技术(adaptivespatial digital processing technology),判断有用信号到达方向(doa)通过选择适当的合并权值,在此方向上形成天线主波束,同时将低增益旁瓣或零陷对准干扰信号方向。在发射时,能使期望用户的接收信号功率最大化,同时使窄波束照射范围外的非期望用户受到的干扰最小,甚至为零。

  智能天线引入空分多址(sdma)方式。在相同时隙、相同频率或相同地址码的情况下,用户仍可以根据信号空间传播路径的不同而区分。实际应用中,天线阵多采用均匀线阵或均匀圆阵。智能天线系统由天线阵;波束成形成网络;自适应算法控制三部分组成.

  2.智能天线的分类

  智能天线主要分为波束转换智能天线(switchedbeamantenna)和自适应阵列智能天线(adaptivearray antenna)。

  (1)波束转换智能天线波束转换智能天线具有有限数目的、固定的、预定义的方向图,它利用多个并行窄波束(15°~30°水平波束宽度)覆盖整个用户区,每个波束的指向是固定的,波束宽度也随天线元的数目而确定(见图2)。波束转换系统实现比较经济,与自适应天线相比结构简单,无需迭代,响应快、鲁棒性好。但预先设计好的工作模式有限,窄波束的特性将极大地影响系统性能。

  (2)自适应阵列智能天线

  自适应阵列智能天线实时地对用户到达方向(doa)进行估计,在此方向上形成主波束,同时使旁瓣或零陷对准干扰方向。自适应天线阵列一般采用4~16天线阵元结构,阵元间距为1/2波长(若阵元间距过大会使接收信号彼此相关程度降低,太小则会在方向图形成不必要的栅瓣,可能放大噪声或干扰)。图3对自适应阵列智能天线与波束转换智能天线进行了比较。

  3.智能天线的自适应波束成形技术

  智能天线技术研究的核心是自适应算法,可分为盲算法、半盲算法和非盲算法。

  非盲算法需借助参考信号,对接收到的预先知道的参考信号进行处理可以确定出信道响应,再按一定准则(如迫零准则)确定各加权值,或者直接根据某一准则自适应地调整权值(即算法模型的抽头系数)。常用的准则有最小均方误差mmse(minimummeansquareerror)、最小均方lms (least mean square)和递归最小二乘等;而自适应调整则采取最优化方法,最常见的是最陡梯度下降法。

  盲算法无须参考信号或导频信号,它充分利用调制信号本身固有的、与具体承载信息比特无关的一些特征(如恒包络、子空间、有限符号集、循环平稳等)来调整权值,以使输出误差尽量小。常见的算法有常数模算法cma(constantmodulearithmetic)、子空间算法、判决反馈算法等。

  非盲算法相对盲算法而言,通常误差较小,收敛速度也较快,但发送参考信号浪费了一定的系统带宽。为此,又发展了半盲算法,即先用非盲算法确定初始权值,再用盲算法进行跟踪和调整。

  欲知详情,请登录维库

-->
相关IC型号

热门点击

 

推荐技术资料

耳机的焊接
    整机电路简单,用洞洞板搭线比较方便。EM8621实际采... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!