超宽带(UWB)极窄脉冲的产生与实现
发布时间:2008/5/29 0:00:00 访问次数:635
摘要:针对超宽带通信技术迅速发展的需要,详细分析了利用双极性晶体管的雪崩特性产生超宽带极窄脉冲信号的原理并介绍了技术现状。本方案在微波双极性晶体管串行级联的基础上,采用了并行同步触发的工作方式,极大地减少了时延与上升时间,产生了皮秒级的极窄脉冲。电路具有结构简单、成本低、性能好及应用价值高等优点。
关键词:超宽带 雪崩倍增 脉冲发生器 同步触发
超宽带uwb(ultra wideban)技术是一种全新的、与传统通信技术有着极大差异的通信新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,从而具有ghz量级的带宽。超宽带技术解决了困扰传统无线技术多年的有关传播方面的重大难题,开发了一个具有千兆赫兹容量和最高空间容量的新无线信道;它还具有对信道衰落不敏感、发射信号功率谱密度低、被截获与检测的概率低、定位精度高等优点。超宽带技术因其具体有优越的特性,越来越受到人们的普遍重视和研究。该技术尤其适用于室内等密集多径场所的高速无线接入和军事通信应用中。
美国联邦通信委员会fcc(federal communications commission)在2002年2月14日批准了民用的超宽带无线技术。实现超宽带技术的首要任务是产生uwb脉冲信号。按照fcc规定,超宽带(uwb)脉冲信号的部分带宽bf=2(fh-fl)/(fh+fl)大于20%,其中fh、fl分别为-10db辐射点所对应的上、下频率点或者是指其总的频谱带宽至少达到500mhz。从本质上看,uwb是发射和接收超短电磁脉冲的技术,可以使用不同的方式来产生和接收这些信息,这些脉冲可以单独发射或成组发射,并且可以根据脉冲的幅度、相位和位置或它们之间的有效组合来对信息进行编码,实现多址通信。
1 uwb极窄脉冲的产生原理
与传统的无线发射机结构相比,uwb发射机的结构相对比较简单,如图1所示。从中可以发现,uwb发射机部分可以不包含功率放大器,替代它的是一个脉冲发生器,它根据要求产生时间宽度极短的窄脉冲直接激励超宽带天线进行辐射。可编程时延实现了伪随机码的时域编码和时域调制。驱动器主要用来提供一定的驱动能力,同时对前、后级电路进行有效的隔离。脉冲发生器在超宽带无线通信系统中占据着极其重要的地位,是uwb系统中独特的关键部件之一。uwb通信系统的超宽带特性直接与脉冲发生器的脉冲形状相关,显然,脉冲的持续时间越短,脉冲所占据的带宽就越宽。能否成功地设计uwb系统的脉冲发生器,关系到整个系统的实现。
窄脉冲产生电路的性能与所使用的高速器件有关。可以产生纳秒、皮秒级窄脉冲的高速器件有隧道二极管、雪崩晶体管等器件。其中隧道二极管和阶跃恢复二极管所产生的脉冲,上升时间可达几十到百皮秒,但其幅度较小,一般为几百毫伏的量级。而雪崩晶体管产生的脉冲,上升时间可以达1~2ns,输出脉冲幅度可达几十伏,但需要较高的电源电压。本文利用微波双极性晶体管雪崩特性,在雪崩导通瞬间,电流呈“雪崩”式迅速增长,从而获得具有陡峭前沿的波形,成形后得到极短脉冲。在电路设计中,采用多个晶体管串行级联,使用并行同步触发的方式,加快了雪崩过程,从而达到进一步降低脉冲宽度的目的。经验证,成功地获得了脉宽为910ps,幅度为8v的极窄脉冲。
一般的晶体三级管的输出特性分为四个区域:饱和、线性、截止与雪崩区。当晶体管的集电极电压很高时,集电结的载流子被强电场加速,从而获得很大能量,它们与晶格碰撞时产生了新的电子-空穴对,新生的电子、空穴又分别被强电场加速而重复上述过程。于是流过集电结的电流便“雪崩”式迅速增长,这就是晶体管的雪崩倍增效应。
晶体管发生雪崩倍增效应之后,晶体管的共基极电流增益用α*表示如下:
α*=mα (1)
式中,m为雪崩倍增因子,α是晶体管的共基极电流增益。其物理意义是:若有一个载流子进入集电结空间电荷区,则就有m个载流子流出空间电荷区。倍增因子m通常可用如下公式表示:
摘要:针对超宽带通信技术迅速发展的需要,详细分析了利用双极性晶体管的雪崩特性产生超宽带极窄脉冲信号的原理并介绍了技术现状。本方案在微波双极性晶体管串行级联的基础上,采用了并行同步触发的工作方式,极大地减少了时延与上升时间,产生了皮秒级的极窄脉冲。电路具有结构简单、成本低、性能好及应用价值高等优点。
关键词:超宽带 雪崩倍增 脉冲发生器 同步触发
超宽带uwb(ultra wideban)技术是一种全新的、与传统通信技术有着极大差异的通信新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据,从而具有ghz量级的带宽。超宽带技术解决了困扰传统无线技术多年的有关传播方面的重大难题,开发了一个具有千兆赫兹容量和最高空间容量的新无线信道;它还具有对信道衰落不敏感、发射信号功率谱密度低、被截获与检测的概率低、定位精度高等优点。超宽带技术因其具体有优越的特性,越来越受到人们的普遍重视和研究。该技术尤其适用于室内等密集多径场所的高速无线接入和军事通信应用中。
美国联邦通信委员会fcc(federal communications commission)在2002年2月14日批准了民用的超宽带无线技术。实现超宽带技术的首要任务是产生uwb脉冲信号。按照fcc规定,超宽带(uwb)脉冲信号的部分带宽bf=2(fh-fl)/(fh+fl)大于20%,其中fh、fl分别为-10db辐射点所对应的上、下频率点或者是指其总的频谱带宽至少达到500mhz。从本质上看,uwb是发射和接收超短电磁脉冲的技术,可以使用不同的方式来产生和接收这些信息,这些脉冲可以单独发射或成组发射,并且可以根据脉冲的幅度、相位和位置或它们之间的有效组合来对信息进行编码,实现多址通信。
1 uwb极窄脉冲的产生原理
与传统的无线发射机结构相比,uwb发射机的结构相对比较简单,如图1所示。从中可以发现,uwb发射机部分可以不包含功率放大器,替代它的是一个脉冲发生器,它根据要求产生时间宽度极短的窄脉冲直接激励超宽带天线进行辐射。可编程时延实现了伪随机码的时域编码和时域调制。驱动器主要用来提供一定的驱动能力,同时对前、后级电路进行有效的隔离。脉冲发生器在超宽带无线通信系统中占据着极其重要的地位,是uwb系统中独特的关键部件之一。uwb通信系统的超宽带特性直接与脉冲发生器的脉冲形状相关,显然,脉冲的持续时间越短,脉冲所占据的带宽就越宽。能否成功地设计uwb系统的脉冲发生器,关系到整个系统的实现。
窄脉冲产生电路的性能与所使用的高速器件有关。可以产生纳秒、皮秒级窄脉冲的高速器件有隧道二极管、雪崩晶体管等器件。其中隧道二极管和阶跃恢复二极管所产生的脉冲,上升时间可达几十到百皮秒,但其幅度较小,一般为几百毫伏的量级。而雪崩晶体管产生的脉冲,上升时间可以达1~2ns,输出脉冲幅度可达几十伏,但需要较高的电源电压。本文利用微波双极性晶体管雪崩特性,在雪崩导通瞬间,电流呈“雪崩”式迅速增长,从而获得具有陡峭前沿的波形,成形后得到极短脉冲。在电路设计中,采用多个晶体管串行级联,使用并行同步触发的方式,加快了雪崩过程,从而达到进一步降低脉冲宽度的目的。经验证,成功地获得了脉宽为910ps,幅度为8v的极窄脉冲。
一般的晶体三级管的输出特性分为四个区域:饱和、线性、截止与雪崩区。当晶体管的集电极电压很高时,集电结的载流子被强电场加速,从而获得很大能量,它们与晶格碰撞时产生了新的电子-空穴对,新生的电子、空穴又分别被强电场加速而重复上述过程。于是流过集电结的电流便“雪崩”式迅速增长,这就是晶体管的雪崩倍增效应。
晶体管发生雪崩倍增效应之后,晶体管的共基极电流增益用α*表示如下:
α*=mα (1)
式中,m为雪崩倍增因子,α是晶体管的共基极电流增益。其物理意义是:若有一个载流子进入集电结空间电荷区,则就有m个载流子流出空间电荷区。倍增因子m通常可用如下公式表示:
上一篇:粗粒度可配置计算结构的研究与发展