用于便携设备的电池管理解决方案
发布时间:2008/5/28 0:00:00 访问次数:405
方法
首先,将一个典型的电池管理系统划分为充电、保护、电量计量和安全四个模块:
1.充电
基于二次电池的电池组不同于一次电池组,二次电池组在使用后需要充电,而不是象一次电池那样会被丢弃。充电电路的种类和充电算法多种多样,它们针对特定化学类型的电池,在其独特的系统环境中为其适当地充电。充电器的位置也应适当选择。充电器是否为独立单元:是座充还是通过转换器的直充;充电器是集成在系统内还是在电池组内;其他重要的考虑因素包括充电时间、温度范围和噪声要求。microchip提供多种充电管理产品,可用于单节或双节锂离子/聚合物电池组的线性充电器。线性充电器的输出噪音低,对那些收发语音和数据的系统显得非常重要。
对需要高效率低功耗的设计,ps200开关模式充电控制器最高开关频率可达1mhz。它包含为锂电池、镍电池和铅酸电池充电的算法。由于开关充电器的设计比较复杂,因此microchip公司提供了软件工具,以指导设计人员进行ic的配置和电路图的生成。对提供充电器产品的标准行业来说,另外一个解决方案是使用带充电控制器的电量计ic。ps501带有脉冲充电电路来控制通用输入/输出,可达到这一要求。这种拓扑提供了一个非常紧凑而且成本效益高的解决方案。系统的充电部分是隔开的,microchip拥有所需的算法来优化充电,包括最大限度地提高充电能力、缩短充电时间,并使顾客达到最佳的满意度。
2.保护
当使用锂离子/聚合物电池时,必须提供保护功能,因为过充或过热可引起火灾或爆炸。铅酸电池或镍电池无需保护,但也常常为其提供保护电路以防止电池损坏或退化。主保护电路为专用电路,用以检测是否发生了不安全状况,并在检测到不安全状况时关闭电池组以避免损坏。二次保护电路防止电池在不安全状况下继续充电和/或放电。万一主保护电路发生故障,可复位的二次电路即可提供后备保护。用户还可另行增加保护级别,如化学熔丝,当其他级别的保护失效时,化学熔丝可永久关闭电池组。专用安全ic通常用于主保护电路。对于二次保护和稳定保护电路,电池管理ic是理想的选择,这是由于它们不额外增加解决方案的成本。micorchip的电量计,如ps501和ps810,可监控各节电池的电压、电池组电压、电流和温度。通用输入/输出(gpio)引脚具备强大的配置功能,可设置和复位任何可能的电量计条件。这种灵活性使电量计可满足非常复杂的安全要求。
3.电量计量
电量计量不单是对流入流出电池组的电流进行监控。精确的电量计量需要一个系统方法,综合考虑典型的使用方式、环境和客户期望。理想状况下,电池管理ic可向用户提供良好的工作性能,同时向系统提供所需信息,以便其做出智能化选择从而提高系统性能。智能化电量计量算法可以延长系统运行时间和电池寿命,并通过精确检测满充和满放点来提供额外的安全。它们还可探测和避免电池失衡和过热等状况。这些算法可根据系统状况来调整,并可以减缓电池老化。它们运用电池行为的可配置模型来确保正确计算自放电和充电所造成的损耗。这些算法可由客户定制,这样用户只接受相关信息,而不必担心可导致数据丢失的意外关机。microchip的电量计产品具备增强功能,使得电量计量更加可靠。
系统意外关机是使用便携设备时最令人不快的事情之一,大多数人应有同感。它轻则会降低客户满意度,重则会引起重要数据丢失和时间及金钱的重大损失。意外关机一般发生于电池电压降到支持系统所需的水平以下时。当负载增加时,电池电压会大幅度降低,尤其是放电行将结束时,这时放电曲线的斜率增加。为避免意外关机,microchip使用了一种依据系统关机时能量需求信息的算法,如下图所示。电量计自动选择适当的关机点,以保证有足够的剩余能量向用户发出警示和保存数据。随着时间的推移,关机点也会变化。随着电池老化,满充容量下降,放电曲线的
方法
首先,将一个典型的电池管理系统划分为充电、保护、电量计量和安全四个模块:
1.充电
基于二次电池的电池组不同于一次电池组,二次电池组在使用后需要充电,而不是象一次电池那样会被丢弃。充电电路的种类和充电算法多种多样,它们针对特定化学类型的电池,在其独特的系统环境中为其适当地充电。充电器的位置也应适当选择。充电器是否为独立单元:是座充还是通过转换器的直充;充电器是集成在系统内还是在电池组内;其他重要的考虑因素包括充电时间、温度范围和噪声要求。microchip提供多种充电管理产品,可用于单节或双节锂离子/聚合物电池组的线性充电器。线性充电器的输出噪音低,对那些收发语音和数据的系统显得非常重要。
对需要高效率低功耗的设计,ps200开关模式充电控制器最高开关频率可达1mhz。它包含为锂电池、镍电池和铅酸电池充电的算法。由于开关充电器的设计比较复杂,因此microchip公司提供了软件工具,以指导设计人员进行ic的配置和电路图的生成。对提供充电器产品的标准行业来说,另外一个解决方案是使用带充电控制器的电量计ic。ps501带有脉冲充电电路来控制通用输入/输出,可达到这一要求。这种拓扑提供了一个非常紧凑而且成本效益高的解决方案。系统的充电部分是隔开的,microchip拥有所需的算法来优化充电,包括最大限度地提高充电能力、缩短充电时间,并使顾客达到最佳的满意度。
2.保护
当使用锂离子/聚合物电池时,必须提供保护功能,因为过充或过热可引起火灾或爆炸。铅酸电池或镍电池无需保护,但也常常为其提供保护电路以防止电池损坏或退化。主保护电路为专用电路,用以检测是否发生了不安全状况,并在检测到不安全状况时关闭电池组以避免损坏。二次保护电路防止电池在不安全状况下继续充电和/或放电。万一主保护电路发生故障,可复位的二次电路即可提供后备保护。用户还可另行增加保护级别,如化学熔丝,当其他级别的保护失效时,化学熔丝可永久关闭电池组。专用安全ic通常用于主保护电路。对于二次保护和稳定保护电路,电池管理ic是理想的选择,这是由于它们不额外增加解决方案的成本。micorchip的电量计,如ps501和ps810,可监控各节电池的电压、电池组电压、电流和温度。通用输入/输出(gpio)引脚具备强大的配置功能,可设置和复位任何可能的电量计条件。这种灵活性使电量计可满足非常复杂的安全要求。
3.电量计量
电量计量不单是对流入流出电池组的电流进行监控。精确的电量计量需要一个系统方法,综合考虑典型的使用方式、环境和客户期望。理想状况下,电池管理ic可向用户提供良好的工作性能,同时向系统提供所需信息,以便其做出智能化选择从而提高系统性能。智能化电量计量算法可以延长系统运行时间和电池寿命,并通过精确检测满充和满放点来提供额外的安全。它们还可探测和避免电池失衡和过热等状况。这些算法可根据系统状况来调整,并可以减缓电池老化。它们运用电池行为的可配置模型来确保正确计算自放电和充电所造成的损耗。这些算法可由客户定制,这样用户只接受相关信息,而不必担心可导致数据丢失的意外关机。microchip的电量计产品具备增强功能,使得电量计量更加可靠。
系统意外关机是使用便携设备时最令人不快的事情之一,大多数人应有同感。它轻则会降低客户满意度,重则会引起重要数据丢失和时间及金钱的重大损失。意外关机一般发生于电池电压降到支持系统所需的水平以下时。当负载增加时,电池电压会大幅度降低,尤其是放电行将结束时,这时放电曲线的斜率增加。为避免意外关机,microchip使用了一种依据系统关机时能量需求信息的算法,如下图所示。电量计自动选择适当的关机点,以保证有足够的剩余能量向用户发出警示和保存数据。随着时间的推移,关机点也会变化。随着电池老化,满充容量下降,放电曲线的
上一篇:三端并联稳压器的隐藏应用
上一篇:FPGA和ASIC的电源管理方案
热门点击
- TIP32C在稳压电路中的作用
- 10KV线路单相接地故障处理方法初探
- 用LM324等设计的低成本高精度温度测量电路
- 电池低电压指示及控制电路设计
- LM2907频率/电压转换器原理及应用
- 集成电路中的MOS晶体管模型
- MOS管的阈值电压探讨
- PN结耗尽区研究
- MOS晶体管的平方律转移特性
- 三端稳压集成电路LM317应用
推荐技术资料
- Seeed Studio
- Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]