多电平变换器的拓扑结构和控制策略
发布时间:2008/5/28 0:00:00 访问次数:329
摘要:多电平变换器是国内外研究的一个热点。首先总结了目前多电平变换器中的拓扑结构,分析和比较了各种拓扑结构的特点。最后详细地介绍了多电平变换器中的各种控制策略,分析和比较了各种控制方法的特点。
关键词:多电平变换器;空间矢量调制;特定消谐波;载波
引言
多电平变换器的概念自从a.nabael在1980年的ias年会上提出以后,以其独特的优点受到广泛的关注和研究。首先,对于n电平的变换器,每个功率器件承受的电压仅为母线电压的1/(n-1),这就使得能够用低压器件来实现高压大功率输出,且无需动态均压电路;多电平变换器的输出电压波形由于电平数目多,使波形畸变(thd)大大缩小,改善了装置的emi特性;还使功率管关断时的dv/dt应力减少,这在高压大电机驱动中,有效地防止了电机转子绕组绝缘击穿;最后,多电平变换器输出无需变压器,从而大大减小了系统的体积和损耗。因此,多电平变换器在高电压大功率的变频调速、有源电力滤波装置、高压直流(hvdc)输电系统和电力系统无功补偿等方面有着广泛的应用前景。
图1
1 多电平变换器的拓扑结构
国内外学者对多电平变换器作了很多的研究,提出了不少拓扑结构。从目前的资料上看,多电平变换器的拓扑结构主要有4种:
1)二极管中点箝位型(见图1);
2)飞跨电容型(见图2);
3)具有独立直流电源级联型(见图3);
4)混合的级联型多电平变换器。
图2、3
其中混合级联型是3)的改进模型,它和3)的结构基本上相同,唯一不同的就是3)的直流电源电压均相等,而4)则不等。从图1至图3不难看出这几种拓扑的结构的优缺点。
二极管箝位型多电平变换器的优点是便于双向功率流控制,功率因数控制方便。缺点是电容均压较为复杂和困难。在国内外这种拓扑结构的产品已经进入了实用化。
飞跨电容型多电平变换器,由于采用了电容取代箝位二极管,因此,它可以省掉大量的箝位二极管,但是引入了不少电容,对高压系统而言,电容体积大、成本高、封装难。另外这种拓扑结构,输出相同质量波形的时候,开关频率增高,开关损耗增大,效率随之降低。目前,这种拓扑结构还没有达到实用化的地步。
级联型多电平变换器的优点主要是同数量电平的时候,使用二极管数目少于拓扑结构1);由于采用的是独立的直流电源,不会有电压不平衡的问题。其主要缺点是采用多路的独立直流电源。目前,这种拓扑结构也有实用化的产品。
2 多电平变换器的控制策略
从目前的资料来看,多电平变换器主要有5种控制策略,即阶梯波脉宽调制、特定消谐波pwm、载波pwm、空间矢量pwm、sigmadelta调制法。
2.1 阶梯波脉宽调制
阶梯波调制就是用阶梯波来逼近正弦波,是比较直观的方法。典型的阶梯波调制的参考电压和输出电压如图4所示。在阶梯波调制中,可以通过选择每一个电平持续时间的长短,来实现低次谐波的消除。2m+1次的多电平的阶梯波调制的输出电压波形的傅立叶分析见式(1)及式(2)。消除k次谐波的原理就是使电压系数bk为0。这种方法本质上是对做参考电压的模拟信号作量化的逼近。从图4中不难看出这种调制方法对功率器件的开关频率没有很高的要求,所以,可以采用低开关频率的大功率器件如gto来实现;另外这种方法调制比变化范围宽而且算法简单,控制上硬件实现方便。不过这种方法的一个主要缺点就是输出波形的谐波含量高。
2.2 多电平特定消谐波法
多电平的特定消谐波法也被称作开关点预制的pwm方法。这种方法是建立在多电平阶梯波调制方法的基础之上的。这种方法的原理就是在阶梯波上通过选择适当的“凹槽”有选择性地消除特定次谐波,从而达到输出波形质量提高和输出thd减小的目的。这种方法的消谐波和阶梯
摘要:多电平变换器是国内外研究的一个热点。首先总结了目前多电平变换器中的拓扑结构,分析和比较了各种拓扑结构的特点。最后详细地介绍了多电平变换器中的各种控制策略,分析和比较了各种控制方法的特点。
关键词:多电平变换器;空间矢量调制;特定消谐波;载波
引言
多电平变换器的概念自从a.nabael在1980年的ias年会上提出以后,以其独特的优点受到广泛的关注和研究。首先,对于n电平的变换器,每个功率器件承受的电压仅为母线电压的1/(n-1),这就使得能够用低压器件来实现高压大功率输出,且无需动态均压电路;多电平变换器的输出电压波形由于电平数目多,使波形畸变(thd)大大缩小,改善了装置的emi特性;还使功率管关断时的dv/dt应力减少,这在高压大电机驱动中,有效地防止了电机转子绕组绝缘击穿;最后,多电平变换器输出无需变压器,从而大大减小了系统的体积和损耗。因此,多电平变换器在高电压大功率的变频调速、有源电力滤波装置、高压直流(hvdc)输电系统和电力系统无功补偿等方面有着广泛的应用前景。
图1
1 多电平变换器的拓扑结构
国内外学者对多电平变换器作了很多的研究,提出了不少拓扑结构。从目前的资料上看,多电平变换器的拓扑结构主要有4种:
1)二极管中点箝位型(见图1);
2)飞跨电容型(见图2);
3)具有独立直流电源级联型(见图3);
4)混合的级联型多电平变换器。
图2、3
其中混合级联型是3)的改进模型,它和3)的结构基本上相同,唯一不同的就是3)的直流电源电压均相等,而4)则不等。从图1至图3不难看出这几种拓扑的结构的优缺点。
二极管箝位型多电平变换器的优点是便于双向功率流控制,功率因数控制方便。缺点是电容均压较为复杂和困难。在国内外这种拓扑结构的产品已经进入了实用化。
飞跨电容型多电平变换器,由于采用了电容取代箝位二极管,因此,它可以省掉大量的箝位二极管,但是引入了不少电容,对高压系统而言,电容体积大、成本高、封装难。另外这种拓扑结构,输出相同质量波形的时候,开关频率增高,开关损耗增大,效率随之降低。目前,这种拓扑结构还没有达到实用化的地步。
级联型多电平变换器的优点主要是同数量电平的时候,使用二极管数目少于拓扑结构1);由于采用的是独立的直流电源,不会有电压不平衡的问题。其主要缺点是采用多路的独立直流电源。目前,这种拓扑结构也有实用化的产品。
2 多电平变换器的控制策略
从目前的资料来看,多电平变换器主要有5种控制策略,即阶梯波脉宽调制、特定消谐波pwm、载波pwm、空间矢量pwm、sigmadelta调制法。
2.1 阶梯波脉宽调制
阶梯波调制就是用阶梯波来逼近正弦波,是比较直观的方法。典型的阶梯波调制的参考电压和输出电压如图4所示。在阶梯波调制中,可以通过选择每一个电平持续时间的长短,来实现低次谐波的消除。2m+1次的多电平的阶梯波调制的输出电压波形的傅立叶分析见式(1)及式(2)。消除k次谐波的原理就是使电压系数bk为0。这种方法本质上是对做参考电压的模拟信号作量化的逼近。从图4中不难看出这种调制方法对功率器件的开关频率没有很高的要求,所以,可以采用低开关频率的大功率器件如gto来实现;另外这种方法调制比变化范围宽而且算法简单,控制上硬件实现方便。不过这种方法的一个主要缺点就是输出波形的谐波含量高。
2.2 多电平特定消谐波法
多电平的特定消谐波法也被称作开关点预制的pwm方法。这种方法是建立在多电平阶梯波调制方法的基础之上的。这种方法的原理就是在阶梯波上通过选择适当的“凹槽”有选择性地消除特定次谐波,从而达到输出波形质量提高和输出thd减小的目的。这种方法的消谐波和阶梯
上一篇:燃料电池的发展
热门点击
- 10KV线路单相接地故障处理方法初探
- 用LM324等设计的低成本高精度温度测量电路
- 电池低电压指示及控制电路设计
- 集成电路中的MOS晶体管模型
- MOS管的阈值电压探讨
- 电流、磁力线方向演示器
- PN结耗尽区研究
- MOS晶体管的平方律转移特性
- 镍氢电池充电器(三)
- 跨步电压触电演示器
推荐技术资料
- Seeed Studio
- Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]