AD7715在精密分析仪器中的应用研究
发布时间:2008/5/28 0:00:00 访问次数:399
摘要:新型高集成度∑-δadc正在得到越来越广泛的应用。这种adc只需极少外接元件就可直接处理微弱信号,仅适合嵌入式系统的应用,也适合应用在很多测量分析仪器中,取代传统的a/d转换器。本文通过对∑-δ系列adc和积分式以及逐次逼近式adc的比较,以ad7115为实例说明这种取代的可行性。
关键词:∑-δ技术 ad7715 分析仪器 三线制串口
引言
ad7715模数转换器是美国模拟器件公司(adi)出品的采用和差转换技术(∑-δ技术)的系列adc之一。该系列a/d转换器均由信号缓冲、可编程增益放大、∑-δ调制器、数字滤波、三线串行接口等几部分组成,在性能、通道数、功耗等指标上有差别。传统的讨论局限于将此类adc应用到手持仪器、工业仪表、dsp设备等便携式系统中,以发挥其小体积、低功耗的特点。而在比较大的系统,例如高严谨分析仪器(如医用生化类仪器和化学成分测量仪器)中,还是偏爱传统的逐次比较或双积分adc。在我们以前设计的两种智能仪器当中,涉及到高阻低频信号的测量时,曾使用过ad574和icl7109。经过认真的分析,我们在其后的改型产品中,大胆使用了单通道的ad7715作为替换,考虑到成本以及我们所需要的通道数目,我们没有使用ad公司的∑-δ系列中的多通道产品,因为ad7715的指标已经很好了。
这种尝试取得了很好的效果,它不仅简化了电路,缩小了面积,提高了分辨率,而且在抗干扰能力上不逊于双积分式的7109;在量程处理和输入信号的阻抗要求上双比逐次逼近式的574灵活方便。转换速度其实也是可变的,其满足精度要求后的速度虽然和574不是一个数量级,但远比7109快,足以满足系统的转换频率要求。其唯一的缺点是,物理接线简单的三线制串行数据接口造成数据处理和程序调试的麻烦,不过和其显著的优点相比,这点困难是值得克服的。
1 ∑-δ技术和ad7715简介
1.1 ∑-δadc工作原理
∑-δ也称为增量调制型转换技术,和普通的模数转换原理不同,∑-δ技术本身就采用了数字技术。使用∑-δ技术的器件都具有数字系统所普遍具备的高可靠性、高稳定性的优点。
∑-δ模数转换器中的模拟部分非常简单(类似于一个1位adc),而数字部分要复杂得多。由于更接近于一个数字器件,∑-δ模数转换器的制造成本很低廉。
简单地说,∑-δadc以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化。通过使用采样、噪声整形和数字滤波等方法增加有效分辨率,然后对adc输出进行数字滤波和采样抽取以降低有效采样速度,使之符合分辨率和带宽的要求。
∑-δadc主要由∑-δ调制器、数字滤波和采样抽取等几部分组成,如图1所示。
调制器本质上是一个高速低精度(1位)的adc,调制器以非常大的过采样率采样模拟信号。在这个阶段调制器将输入和输出之间的差值(δ)进行一阶划多阶积分(∑),结果通过一个量化器(1位adc)输出二进制码流。该码流一方面输出给数字滤波部分,另一方面通过一位dac后和输入信号比较,提供差值信号(δ),构成一个反馈循环。
∑-δ调器以采样速率输出1位数据流,频率可高达mhz量级。数字滤波和采样抽取的目的是从该数据流中提取出有用的信息。通过数字滤波采样抽取,滤波经过调制器整形后的量化噪声,提高系统精度。采样抽取的底限是满足信号无损重建的采样定律,采样频率大于奈奎斯特频率的两倍(fn>2fb)。
1.2 ad7715简介
我们使用了16脚标准dip封装形式的ad7715,而没有使用soic或tssop封装。因为和原来使用的adc相比,dip封装的ad7715已经非常不占位置了。限于篇幅,ad7715的详细工作原理不作介绍,可以参见ad公司的ad7715器件手册。为便于下面的分析,在此仅给出主要技术参数和内部编程用寄存器的简单说明。ad7715片内共有通信、设置、数据、测试四个寄存器供编程和访
摘要:新型高集成度∑-δadc正在得到越来越广泛的应用。这种adc只需极少外接元件就可直接处理微弱信号,仅适合嵌入式系统的应用,也适合应用在很多测量分析仪器中,取代传统的a/d转换器。本文通过对∑-δ系列adc和积分式以及逐次逼近式adc的比较,以ad7115为实例说明这种取代的可行性。
关键词:∑-δ技术 ad7715 分析仪器 三线制串口
引言
ad7715模数转换器是美国模拟器件公司(adi)出品的采用和差转换技术(∑-δ技术)的系列adc之一。该系列a/d转换器均由信号缓冲、可编程增益放大、∑-δ调制器、数字滤波、三线串行接口等几部分组成,在性能、通道数、功耗等指标上有差别。传统的讨论局限于将此类adc应用到手持仪器、工业仪表、dsp设备等便携式系统中,以发挥其小体积、低功耗的特点。而在比较大的系统,例如高严谨分析仪器(如医用生化类仪器和化学成分测量仪器)中,还是偏爱传统的逐次比较或双积分adc。在我们以前设计的两种智能仪器当中,涉及到高阻低频信号的测量时,曾使用过ad574和icl7109。经过认真的分析,我们在其后的改型产品中,大胆使用了单通道的ad7715作为替换,考虑到成本以及我们所需要的通道数目,我们没有使用ad公司的∑-δ系列中的多通道产品,因为ad7715的指标已经很好了。
这种尝试取得了很好的效果,它不仅简化了电路,缩小了面积,提高了分辨率,而且在抗干扰能力上不逊于双积分式的7109;在量程处理和输入信号的阻抗要求上双比逐次逼近式的574灵活方便。转换速度其实也是可变的,其满足精度要求后的速度虽然和574不是一个数量级,但远比7109快,足以满足系统的转换频率要求。其唯一的缺点是,物理接线简单的三线制串行数据接口造成数据处理和程序调试的麻烦,不过和其显著的优点相比,这点困难是值得克服的。
1 ∑-δ技术和ad7715简介
1.1 ∑-δadc工作原理
∑-δ也称为增量调制型转换技术,和普通的模数转换原理不同,∑-δ技术本身就采用了数字技术。使用∑-δ技术的器件都具有数字系统所普遍具备的高可靠性、高稳定性的优点。
∑-δ模数转换器中的模拟部分非常简单(类似于一个1位adc),而数字部分要复杂得多。由于更接近于一个数字器件,∑-δ模数转换器的制造成本很低廉。
简单地说,∑-δadc以很低的采样分辨率(1位)和很高的采样速率将模拟信号数字化。通过使用采样、噪声整形和数字滤波等方法增加有效分辨率,然后对adc输出进行数字滤波和采样抽取以降低有效采样速度,使之符合分辨率和带宽的要求。
∑-δadc主要由∑-δ调制器、数字滤波和采样抽取等几部分组成,如图1所示。
调制器本质上是一个高速低精度(1位)的adc,调制器以非常大的过采样率采样模拟信号。在这个阶段调制器将输入和输出之间的差值(δ)进行一阶划多阶积分(∑),结果通过一个量化器(1位adc)输出二进制码流。该码流一方面输出给数字滤波部分,另一方面通过一位dac后和输入信号比较,提供差值信号(δ),构成一个反馈循环。
∑-δ调器以采样速率输出1位数据流,频率可高达mhz量级。数字滤波和采样抽取的目的是从该数据流中提取出有用的信息。通过数字滤波采样抽取,滤波经过调制器整形后的量化噪声,提高系统精度。采样抽取的底限是满足信号无损重建的采样定律,采样频率大于奈奎斯特频率的两倍(fn>2fb)。
1.2 ad7715简介
我们使用了16脚标准dip封装形式的ad7715,而没有使用soic或tssop封装。因为和原来使用的adc相比,dip封装的ad7715已经非常不占位置了。限于篇幅,ad7715的详细工作原理不作介绍,可以参见ad公司的ad7715器件手册。为便于下面的分析,在此仅给出主要技术参数和内部编程用寄存器的简单说明。ad7715片内共有通信、设置、数据、测试四个寄存器供编程和访
热门点击
- 10KV线路单相接地故障处理方法初探
- 用LM324等设计的低成本高精度温度测量电路
- 电池低电压指示及控制电路设计
- 集成电路中的MOS晶体管模型
- MOS管的阈值电压探讨
- 电流、磁力线方向演示器
- PN结耗尽区研究
- MOS晶体管的平方律转移特性
- 镍氢电池充电器(三)
- 跨步电压触电演示器
推荐技术资料
- Seeed Studio
- Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]