配电网无功补偿方案比较和补偿工程应注意的问题
发布时间:2008/5/28 0:00:00 访问次数:454
摘要:无功补偿对电网的安全、优质、经济运行具有重要作用。配电网规模巨大,负荷情况复杂,使用环境条件差,合理选择无功补偿方案和补偿技术意义重大,补偿工程也有很多问题值得认真分析和思考。本文重点分析、比较了配电网常用无功补偿方案的特点,并结合无功补偿产品开发和无功补偿工程建设的实践,提出了无功补偿工程应注意问题和建议。
关键词:配电网 无功补偿 补偿方案 无功优化
1 引言
由于无功补偿对电网安全、优质、经济运行具有重要作用,因此无功补偿是电力部门和用户共同关注的问题。合理选择无功补偿方案和补偿容量,能有效提高系统的电压稳定性,保证电网的电压质量,提高发输电设备的利用率,降低有功网损和减少发电费用。
我国配电网的规模巨大,因此配电网无功补偿对降损节能,改善电压质量意义重大。本文结合当前人们关注的电网无功补偿问题,重点分析、比较了配电网常用无功补偿方案特点,并通过对无功补偿应用技术的分析,提出了配电网无功补偿工程应注意问题和相关建议。
2 配电网无功补偿方案比较
配电网无功补偿方案有变电站集中补偿、配电变低压补偿、配电线路固定补偿和用电设备分散补偿。四种方案示意图见图1所示。
2.1变电站集中补偿
变电站集中补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是平衡输电网的无功功率,改善输电网的功率因数,提高系统终端变电所的母线电压,补偿变电站主变压器和高压输电线路的无功损耗。这些补偿装置一般集中接在变电站10kv母线上,因此具有管理容易、维护方便等优点,但这种补偿方案对10kv配电网的降损不起作用。
图 1 配电网常见无功补偿方式示意图
为实现变电站的电压/无功综合控制,通常采用并联电容器组和有载调压抽头协调调节。协调调节控制算法国内学者进行过大量研究,九区图法是一种常用的有效方法[1]。但大量的实际应用表明,投切过于频繁会影响电容器开关和分接头的使用寿命,增大运行维护工作量,通常在实际中要限制抽头调节和电容器组操作次数。采用电力电子开关控制成本比较高、开关自身功率损耗也很大,因此变电站高压电压/无功控制技术仍有待进一步改善和研究。
鉴于变电站无功补偿对提高高压电网功率因数,维持变电所母线电压和平衡系统无功有重要作用,因此应根据负荷的增长安排、设计好变电站的无功补偿容量,运行中在保证电压合格和无功补偿效果最好的情况下,尽可能使电容器组投切开关的操作次数为最少。
2.2 配电变低压补偿
配电变低压补偿是目前应用最普遍的补偿方法。由于用户的日负荷变化大,通常采用微机控制、跟踪负荷波动分组投切电容器补偿,总补偿容量在几十至几百千乏不等。目的是提高专用变用户功率因数,实现无功的就地平衡,降低配电网损耗和改善用户电压质量。
配变低压无功补偿的优点是补偿后功率因数高、降损节能效果好。但由于配电变压器的数量多、安装地点分散,因此补偿工程的投资较大,运行维护工作量大,也因此要求厂家要尽可能降低装置的成本,提高装置的可靠性。
采用接触器投切电容器的冲击电流大,影响电容器和接触器的使用寿命;用晶闸管投切电容器能解决接触器投切电容器存在的问题,但明显缺点是装置存晶闸管功率损耗,需要安装风扇和散热器来通风与散热,而散热器会增大装置的体积,风扇则影响装置的可靠性。
图2 机电一体开关无功补偿装置接线图
为解决这些问题,笔者组织开发、研制了机电一体开关无功补偿装置[2],机电开关补偿装置典型接线如图2所示。装置采用固定补偿与分组补偿结合,以降低装置的生产成本;装置能实现分相补偿,以满足三相不平衡系统的需要。机电开关控制使装置既有晶闸管开关的优点,又具有接触器无功率损耗的优点。几千台装置的现场运行、试验表明,机电开关补偿装置体积小、可靠性高,能满足户外环境、长期工作需要。机电开关的原理与技术详见文献[2]。
低压补偿装置安装地点分散、数量大,运行维护是补偿工程需要重点考虑的问题;另外,配电系统负荷情况复杂,系统可能存在谐波、三相不平衡,以及防止出现过补偿等问题,这些工程中应注意的问题后面详细介绍。
2.3 配电线路固定补偿
大量配电变压器要消耗无功,很多公用变压器没有安装低压补偿装置,造成的很大无功缺额需要变电站或发电厂承担,大量的无功沿线传输使得配电网的
摘要:无功补偿对电网的安全、优质、经济运行具有重要作用。配电网规模巨大,负荷情况复杂,使用环境条件差,合理选择无功补偿方案和补偿技术意义重大,补偿工程也有很多问题值得认真分析和思考。本文重点分析、比较了配电网常用无功补偿方案的特点,并结合无功补偿产品开发和无功补偿工程建设的实践,提出了无功补偿工程应注意问题和建议。
关键词:配电网 无功补偿 补偿方案 无功优化
1 引言
由于无功补偿对电网安全、优质、经济运行具有重要作用,因此无功补偿是电力部门和用户共同关注的问题。合理选择无功补偿方案和补偿容量,能有效提高系统的电压稳定性,保证电网的电压质量,提高发输电设备的利用率,降低有功网损和减少发电费用。
我国配电网的规模巨大,因此配电网无功补偿对降损节能,改善电压质量意义重大。本文结合当前人们关注的电网无功补偿问题,重点分析、比较了配电网常用无功补偿方案特点,并通过对无功补偿应用技术的分析,提出了配电网无功补偿工程应注意问题和相关建议。
2 配电网无功补偿方案比较
配电网无功补偿方案有变电站集中补偿、配电变低压补偿、配电线路固定补偿和用电设备分散补偿。四种方案示意图见图1所示。
2.1变电站集中补偿
变电站集中补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是平衡输电网的无功功率,改善输电网的功率因数,提高系统终端变电所的母线电压,补偿变电站主变压器和高压输电线路的无功损耗。这些补偿装置一般集中接在变电站10kv母线上,因此具有管理容易、维护方便等优点,但这种补偿方案对10kv配电网的降损不起作用。
图 1 配电网常见无功补偿方式示意图
为实现变电站的电压/无功综合控制,通常采用并联电容器组和有载调压抽头协调调节。协调调节控制算法国内学者进行过大量研究,九区图法是一种常用的有效方法[1]。但大量的实际应用表明,投切过于频繁会影响电容器开关和分接头的使用寿命,增大运行维护工作量,通常在实际中要限制抽头调节和电容器组操作次数。采用电力电子开关控制成本比较高、开关自身功率损耗也很大,因此变电站高压电压/无功控制技术仍有待进一步改善和研究。
鉴于变电站无功补偿对提高高压电网功率因数,维持变电所母线电压和平衡系统无功有重要作用,因此应根据负荷的增长安排、设计好变电站的无功补偿容量,运行中在保证电压合格和无功补偿效果最好的情况下,尽可能使电容器组投切开关的操作次数为最少。
2.2 配电变低压补偿
配电变低压补偿是目前应用最普遍的补偿方法。由于用户的日负荷变化大,通常采用微机控制、跟踪负荷波动分组投切电容器补偿,总补偿容量在几十至几百千乏不等。目的是提高专用变用户功率因数,实现无功的就地平衡,降低配电网损耗和改善用户电压质量。
配变低压无功补偿的优点是补偿后功率因数高、降损节能效果好。但由于配电变压器的数量多、安装地点分散,因此补偿工程的投资较大,运行维护工作量大,也因此要求厂家要尽可能降低装置的成本,提高装置的可靠性。
采用接触器投切电容器的冲击电流大,影响电容器和接触器的使用寿命;用晶闸管投切电容器能解决接触器投切电容器存在的问题,但明显缺点是装置存晶闸管功率损耗,需要安装风扇和散热器来通风与散热,而散热器会增大装置的体积,风扇则影响装置的可靠性。
图2 机电一体开关无功补偿装置接线图
为解决这些问题,笔者组织开发、研制了机电一体开关无功补偿装置[2],机电开关补偿装置典型接线如图2所示。装置采用固定补偿与分组补偿结合,以降低装置的生产成本;装置能实现分相补偿,以满足三相不平衡系统的需要。机电开关控制使装置既有晶闸管开关的优点,又具有接触器无功率损耗的优点。几千台装置的现场运行、试验表明,机电开关补偿装置体积小、可靠性高,能满足户外环境、长期工作需要。机电开关的原理与技术详见文献[2]。
低压补偿装置安装地点分散、数量大,运行维护是补偿工程需要重点考虑的问题;另外,配电系统负荷情况复杂,系统可能存在谐波、三相不平衡,以及防止出现过补偿等问题,这些工程中应注意的问题后面详细介绍。
2.3 配电线路固定补偿
大量配电变压器要消耗无功,很多公用变压器没有安装低压补偿装置,造成的很大无功缺额需要变电站或发电厂承担,大量的无功沿线传输使得配电网的
上一篇:谈医院电气设计的安全性
热门点击
- 10KV线路单相接地故障处理方法初探
- 常见连接器和插座介绍
- 用LM324等设计的低成本高精度温度测量电路
- 电池低电压指示及控制电路设计
- 集成电路中的MOS晶体管模型
- MOS管的阈值电压探讨
- 准同期并网控制电路
- 电流、磁力线方向演示器
- PN结耗尽区研究
- MOS晶体管的平方律转移特性
推荐技术资料
- Seeed Studio
- Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]