位置:51电子网 » 技术资料 » 音响技术

GSM/GPRS蜂窝电话音频记录/回放方案

发布时间:2008/5/28 0:00:00 访问次数:428

蜂窝电话电路的复杂度和高密度给系统设计者带来了挑战,要想建立一条高品质、满足供应商规范的音频记录/回放通道将是一项困难重重的任务。新型号中增加的多媒体功能,例如照相机、铃音发生器、mp3播放器和语音备忘录等,通常要求更大程度的产品变化。这不仅仅只是增加一些新的元件,印制板布局也要做大的修改,这会造成不良接地以及由此而引起新的噪声问题。

蜂窝电话中模拟音频通道上的噪声和干扰通常归因于射频到音频频段的解调或共用/不良接地。

接收到来自于电话天线的高能量射频信号时,电话中带宽相对较低的音频电路会错误地解调射频发射信号。这会恶化音频通道的噪声背景。可以在音频放大器电路中采取一定技术和结构将这种恶化效应减至最小,紧邻输入引脚放置抑制元件就是一种廉价的补救措施。经常使用低值接地电容,因为设计者通常是按照射频载波频率选择最低的电容器阻抗。

将所有通常会用到的模拟音频输入/输出功能整合到单个ic中是一种非常有效的方案,它可将共用/不良接地带来的影响减至最小。这实际上就是将问题最多、最麻烦的接地问题由印制板布局工程师转移给了ic制造商。除了包含必要的模拟音频输入/输出功能外,这种ic内同时还必须提供足够支持语音频段和任何多媒体功能(例如应用处理器)的数字音频接口。该ic还应提供对于不同单元的分区关断控制,以最大化电池寿命。

下面着重讨论在单芯片方案中出现的一些模拟/数字音频问题。我们以max9851—这种简化gsm/gprs蜂窝电话设计的技术方案为样板展开讨论。

模拟音频—降低麦克风噪声

高增益音频电路,例如麦克风放大器(麦克放大器),受不良接地的影响最大。单端电路结构尤其如此,在这种电路中,麦克放大器参考地和信号源参考地(本例中为麦克的gnd引脚)之间很小的电压差都会被放大进入信号通道。在类似于蜂窝电话这样的复杂产品中,音频部分的地平面往往是和其他电路共用的,由于铜接地面不是“零欧姆” (我们常常如此认为),这会带来性能恶化问题。因此,如有任何电流流过这个有限的电阻,都会在地平面上产生一个小的电位差。

接地问题可以利用一个全差分输入的麦克放大器解决。这种方法已被max9851采用,实际就是利用差分输入对麦克的gnd引脚进行远端感应。采用远端感应后,codec参照端和麦克gnd之间的交流电压差对于麦克放大器呈现为共模信号。这个电压差被放大器的共模抑制比衰减,因而显著降低了它对于信号通道的等效噪声贡献。这种设计的唯一代价是需要在麦克和codec之间多布一条印制板线条,以及增加一个耦合电容。

max9851也可切换到一个外部的立体声麦克输入来取代内部麦克。这种输入通常来自于汽车免提或其他外部耳机。这种情况下,extmicgnd引脚“kelvin感应 ” l和r两个通道,利用放大器的输入cmrr可以消除地噪声,原理同上所述。extmicgnd的印制板布线应该一直延伸到汽车免提插座或耳机插孔的gnd端,以获得最佳效果(图1)。

图1.利用差分放大器可以远端感应插座的参照“地”。内部地和插座地之间的任何交流电压被大幅度抑制,不被麦克放大器增益放大。

麦克偏置电路也会给信号通道引入显著的噪声。大部分偏置电压噪声会直接呈现在麦克放大器的输入端。更加合理的麦克放大器设计,正如max9851中所集成的那样,应该提供一个经过调整的、输出噪声水平和麦克放大器输入噪声水平相匹配的低噪声偏置电压。

模拟音频—立体声directdrive?耳机和受话器输出

要想以接近于cd的音质播放压缩的音乐文件就需要高质量的耳机音频回放电路。信噪比(snr)、线性和带宽都要比基本的300hz至4khz语音通道大幅度提高。低频扩展可能会有问题,因为耳机驱动器通常都要串联电容来阻止耳机放大器的直流偏压被进入耳机。常见的立体声耳机典型阻抗可低至16ω,它和串联电容构成高通滤波器,对于低频成分有衰减作用。要想扩展低频响应,例如向下到100hz,对于16ω立体声耳机就需采用两个100μf隔直电容。

利用maxim的directdrive技术可以去掉这两个串联电容,因为放大器的输出参照于0v。这种情况下的低频分量则受限于去直流滤波器(数字源,正如max9851中所设计的),或者受限于线路或麦克等模拟源输入上的输入耦合电容。directdrive设计的另一个优点是,当其离开或进入关断模式时,从根本上消除了产生咔嗒/噼噗声的原因。因为没有串联电容,也就无需对电容充电或放电,开/关过程中没有净电流流过耳机。

max9851的立体声耳机输出也可工作在桥式单声道方式(图2),以便兼容不同的耳机和配件。同一个插座既可用于立体声耳机,或者也可用

蜂窝电话电路的复杂度和高密度给系统设计者带来了挑战,要想建立一条高品质、满足供应商规范的音频记录/回放通道将是一项困难重重的任务。新型号中增加的多媒体功能,例如照相机、铃音发生器、mp3播放器和语音备忘录等,通常要求更大程度的产品变化。这不仅仅只是增加一些新的元件,印制板布局也要做大的修改,这会造成不良接地以及由此而引起新的噪声问题。

蜂窝电话中模拟音频通道上的噪声和干扰通常归因于射频到音频频段的解调或共用/不良接地。

接收到来自于电话天线的高能量射频信号时,电话中带宽相对较低的音频电路会错误地解调射频发射信号。这会恶化音频通道的噪声背景。可以在音频放大器电路中采取一定技术和结构将这种恶化效应减至最小,紧邻输入引脚放置抑制元件就是一种廉价的补救措施。经常使用低值接地电容,因为设计者通常是按照射频载波频率选择最低的电容器阻抗。

将所有通常会用到的模拟音频输入/输出功能整合到单个ic中是一种非常有效的方案,它可将共用/不良接地带来的影响减至最小。这实际上就是将问题最多、最麻烦的接地问题由印制板布局工程师转移给了ic制造商。除了包含必要的模拟音频输入/输出功能外,这种ic内同时还必须提供足够支持语音频段和任何多媒体功能(例如应用处理器)的数字音频接口。该ic还应提供对于不同单元的分区关断控制,以最大化电池寿命。

下面着重讨论在单芯片方案中出现的一些模拟/数字音频问题。我们以max9851—这种简化gsm/gprs蜂窝电话设计的技术方案为样板展开讨论。

模拟音频—降低麦克风噪声

高增益音频电路,例如麦克风放大器(麦克放大器),受不良接地的影响最大。单端电路结构尤其如此,在这种电路中,麦克放大器参考地和信号源参考地(本例中为麦克的gnd引脚)之间很小的电压差都会被放大进入信号通道。在类似于蜂窝电话这样的复杂产品中,音频部分的地平面往往是和其他电路共用的,由于铜接地面不是“零欧姆” (我们常常如此认为),这会带来性能恶化问题。因此,如有任何电流流过这个有限的电阻,都会在地平面上产生一个小的电位差。

接地问题可以利用一个全差分输入的麦克放大器解决。这种方法已被max9851采用,实际就是利用差分输入对麦克的gnd引脚进行远端感应。采用远端感应后,codec参照端和麦克gnd之间的交流电压差对于麦克放大器呈现为共模信号。这个电压差被放大器的共模抑制比衰减,因而显著降低了它对于信号通道的等效噪声贡献。这种设计的唯一代价是需要在麦克和codec之间多布一条印制板线条,以及增加一个耦合电容。

max9851也可切换到一个外部的立体声麦克输入来取代内部麦克。这种输入通常来自于汽车免提或其他外部耳机。这种情况下,extmicgnd引脚“kelvin感应 ” l和r两个通道,利用放大器的输入cmrr可以消除地噪声,原理同上所述。extmicgnd的印制板布线应该一直延伸到汽车免提插座或耳机插孔的gnd端,以获得最佳效果(图1)。

图1.利用差分放大器可以远端感应插座的参照“地”。内部地和插座地之间的任何交流电压被大幅度抑制,不被麦克放大器增益放大。

麦克偏置电路也会给信号通道引入显著的噪声。大部分偏置电压噪声会直接呈现在麦克放大器的输入端。更加合理的麦克放大器设计,正如max9851中所集成的那样,应该提供一个经过调整的、输出噪声水平和麦克放大器输入噪声水平相匹配的低噪声偏置电压。

模拟音频—立体声directdrive?耳机和受话器输出

要想以接近于cd的音质播放压缩的音乐文件就需要高质量的耳机音频回放电路。信噪比(snr)、线性和带宽都要比基本的300hz至4khz语音通道大幅度提高。低频扩展可能会有问题,因为耳机驱动器通常都要串联电容来阻止耳机放大器的直流偏压被进入耳机。常见的立体声耳机典型阻抗可低至16ω,它和串联电容构成高通滤波器,对于低频成分有衰减作用。要想扩展低频响应,例如向下到100hz,对于16ω立体声耳机就需采用两个100μf隔直电容。

利用maxim的directdrive技术可以去掉这两个串联电容,因为放大器的输出参照于0v。这种情况下的低频分量则受限于去直流滤波器(数字源,正如max9851中所设计的),或者受限于线路或麦克等模拟源输入上的输入耦合电容。directdrive设计的另一个优点是,当其离开或进入关断模式时,从根本上消除了产生咔嗒/噼噗声的原因。因为没有串联电容,也就无需对电容充电或放电,开/关过程中没有净电流流过耳机。

max9851的立体声耳机输出也可工作在桥式单声道方式(图2),以便兼容不同的耳机和配件。同一个插座既可用于立体声耳机,或者也可用

相关IC型号

热门点击

 

推荐技术资料

基准电压的提供
    开始的时候,想使用LM385作为基准,HIN202EC... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!