位置:51电子网 » 技术资料 » 传感与控制

多传感器信息融合技术在智能驾驶系统中的应用

发布时间:2007/4/23 0:00:00 访问次数:519

多传感器信息融合技术在智能驾驶系统中的应用 [日期:2004-12-8] 来源:电子技术应用 作者:赵敏华 安毅生 黄永宣 [字体:激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于1999年提出的CLARK算法(Combined Likelihood Adding Radar)和Institude Neuroinformatik提出的ICDA(Integrative Coupling of Different Algorithms)算法等方法实现。

2.1 传感器的选择

识别障碍的首要问题是传感器的选择,下面对几种传感器的优缺点进行说明(见表1)。探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。不过在ITS系统中除了上文提出的场景限制外,还有以下问题。首先因其只能在10m以内有效使用,所以并不适合ITS系统。另外超声波传感器的工作原理基于声,即使可以使之测达100m远,但其更新频率为2Hz,而且还有可能在传输中受到其它信号的干扰,所以在CW/ICC系统中使用是不实际的。

表1 传感器性能比较

传感器类型优 点缺 点超声波
视觉
激光雷达
MMW雷达价格合理,夜间不受影响。
易于多目标测量和分类,分辨率好。
价格相合理,夜间不受影响
不受灯光、天气影响。测量范围小,对天气变化敏感。
不能直接测量距离,算法复杂,处理速度慢。
对水、灰尘、灯光敏感。
价格贵

视觉传感器在CW系统中使用得非常广泛。其优点是尺寸小,价格合理,在一定的宽度和视觉域内可以测量定多个目标,并且可以利用测量的图像根据外形和大小对目标进行分类。但是算法复杂,处理速度慢。

雷达传感器在军事和航空领域已经使用了几十年。主要优点是可以鲁棒地探测到障碍而不受天气或灯光条件限制。近十年来随着尺寸及价格的降低,在汽车行业开始被使用。但是仍存在性价比的问题。

为了克服这些问题,利用信息融合技术提出了一些新的方法,利用这些方式可以得到较单一传感器更为可靠的探测。

2.2 信息融合的基本原理

所谓信息融合就是将来自多个传感器或多源的信息进行综合处理,从而得出更为准确、可靠的结论。多传感器信息融合是人类和其它生物系统中普遍存在的一种基本功能,人类本地地具有将身体上的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物、声音、气味和触觉)与先验知识进行综合的能力,以便对其周围的环境和正在发生的事件做出估计。由于人类的感官具有不同度量特征,因而可测出不同空间范围的各种物理现象,这一过程是复杂的,也是自适应的。它将各种信息(图像、声音、气味和物理形状或描述)转化成对环境的有价值的解释。

多传感器信息融合实际上是人对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特片:对变的或者非时变的,实时的或者非实时的,模糊的或者确定的,精确的或者不完整的,相互支持的或者互补的。多传感器信息融合就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则结合起来,产生对观测环境的一致性解释或描述。信息融合的目标是基于各种传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的效果,它的最终目的是利用多个传感器共同或联合操作的优势来提高整个系统的有效性。

2.3 常用信息融合算法

信息融合技术涉及到方面的理论和技术,如信息处理、估计理论、不确定性理论、模式识别、最优化技术、神经网络和人工智能等。由不同的应用要求形成的各种方法都是融合方法的个子集。表2归纳了一些常用的信息融合方法。

表2 信息融合方法

经典方法现代方法估计方法统计方法信息论方法人工智能方法加权平均法经典推理法聚类分析模糊逻辑极大似然估计贝叶斯估计模板法产生式规则最小二乘法品质因素法熵理论神经网络卡尔曼滤波D-S证据决策理论 遗传算法   模糊积分理论

2.4 智能驾驶系统中信息融合算法的基本结构

由于单一传感器的局限性,现在ITS系统中多使用一组传感器探测不同视点的信息,再对这些信息进行融合处理,以完成初始目标探测识别。在智能驾驶系统

多传感器信息融合技术在智能驾驶系统中的应用 [日期:2004-12-8] 来源:电子技术应用 作者:赵敏华 安毅生 黄永宣 [字体:激光等)可以测定距离、范围等信息,对两方面的信息融合处理后能够给出更可靠的识别信息。融合技术可以采用Beaurais等人于1999年提出的CLARK算法(Combined Likelihood Adding Radar)和Institude Neuroinformatik提出的ICDA(Integrative Coupling of Different Algorithms)算法等方法实现。

2.1 传感器的选择

识别障碍的首要问题是传感器的选择,下面对几种传感器的优缺点进行说明(见表1)。探测障碍的最简单的方法是使用超声波传感器,它是利用向目标发射超声波脉冲,计算其往返时间来判定距离的。该方法被广泛应用于移动机器人的研究上。其优点是价格便宜,易于使用,且在10m以内能给出精确的测量。不过在ITS系统中除了上文提出的场景限制外,还有以下问题。首先因其只能在10m以内有效使用,所以并不适合ITS系统。另外超声波传感器的工作原理基于声,即使可以使之测达100m远,但其更新频率为2Hz,而且还有可能在传输中受到其它信号的干扰,所以在CW/ICC系统中使用是不实际的。

表1 传感器性能比较

传感器类型优 点缺 点超声波
视觉
激光雷达
MMW雷达价格合理,夜间不受影响。
易于多目标测量和分类,分辨率好。
价格相合理,夜间不受影响
不受灯光、天气影响。测量范围小,对天气变化敏感。
不能直接测量距离,算法复杂,处理速度慢。
对水、灰尘、灯光敏感。
价格贵

视觉传感器在CW系统中使用得非常广泛。其优点是尺寸小,价格合理,在一定的宽度和视觉域内可以测量定多个目标,并且可以利用测量的图像根据外形和大小对目标进行分类。但是算法复杂,处理速度慢。

雷达传感器在军事和航空领域已经使用了几十年。主要优点是可以鲁棒地探测到障碍而不受天气或灯光条件限制。近十年来随着尺寸及价格的降低,在汽车行业开始被使用。但是仍存在性价比的问题。

为了克服这些问题,利用信息融合技术提出了一些新的方法,利用这些方式可以得到较单一传感器更为可靠的探测。

2.2 信息融合的基本原理

所谓信息融合就是将来自多个传感器或多源的信息进行综合处理,从而得出更为准确、可靠的结论。多传感器信息融合是人类和其它生物系统中普遍存在的一种基本功能,人类本地地具有将身体上的各种功能器官(眼、耳、鼻、四肢)所探测的信息(景物、声音、气味和触觉)与先验知识进行综合的能力,以便对其周围的环境和正在发生的事件做出估计。由于人类的感官具有不同度量特征,因而可测出不同空间范围的各种物理现象,这一过程是复杂的,也是自适应的。它将各种信息(图像、声音、气味和物理形状或描述)转化成对环境的有价值的解释。

多传感器信息融合实际上是人对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中,各种传感器提供的信息可能具有不同的特片:对变的或者非时变的,实时的或者非实时的,模糊的或者确定的,精确的或者不完整的,相互支持的或者互补的。多传感器信息融合就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则结合起来,产生对观测环境的一致性解释或描述。信息融合的目标是基于各种传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的效果,它的最终目的是利用多个传感器共同或联合操作的优势来提高整个系统的有效性。

2.3 常用信息融合算法

信息融合技术涉及到方面的理论和技术,如信息处理、估计理论、不确定性理论、模式识别、最优化技术、神经网络和人工智能等。由不同的应用要求形成的各种方法都是融合方法的个子集。表2归纳了一些常用的信息融合方法。

表2 信息融合方法

经典方法现代方法估计方法统计方法信息论方法人工智能方法加权平均法经典推理法聚类分析模糊逻辑极大似然估计贝叶斯估计模板法产生式规则最小二乘法品质因素法熵理论神经网络卡尔曼滤波D-S证据决策理论 遗传算法   模糊积分理论

2.4 智能驾驶系统中信息融合算法的基本结构

由于单一传感器的局限性,现在ITS系统中多使用一组传感器探测不同视点的信息,再对这些信息进行融合处理,以完成初始目标探测识别。在智能驾驶系统

相关IC型号

热门点击

 

推荐技术资料

滑雪绕桩机器人
   本例是一款非常有趣,同时又有一定调试难度的玩法。EDE2116AB... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!