位置:51电子网 » 技术资料 » D S P

DSP在动液面深度测试中的应用

发布时间:2008/5/27 0:00:00 访问次数:993

潘琢金 朱国新 

  摘 要:本文主要介绍数字信号处理器及数字信号处理技术在动液面深度测试中的应用,并与传统实现方案进行比较。
  关键词:dsp 数据采集 数字滤波 动液面深度

1 引言

  动液面深度是油机井的井口到井下油层表面的距离,是抽油机井定期测试中的一个重要参数。由动液面深度还可计算出井管内的平均声速。动液面深度、井管内的平均声速与其它测试项目的结果相结合可以充分反映抽油机井的工作状态和产量情况,为油井的诊断和维护提供依据。

2 动液面深度测试原理

  动液面深度测试仪器通过采集由安装在井口的炮枪发出并经过井管接头反射的节箍波信号和经过油层表面反射的液面波信号(如图1所示),找出井口位置、动液面位置及基准节箍波,用公式(1)来计算动液面深度。

图1 节箍波和液面波波形示意图

       (1)

  公式(1)中a、b、c、d分别代表井口位置、液面位置、参考节箍波起点和参考节箍波终点,l为单节井管的长度,n为介于c、d之间的参考节箍波的个数。由于每个节箍波对应一节井管,因此n就是c、d之间的井管个数。
  由于传感器本身的噪声、环境噪声等多种噪声源的存在,所采集到的波形并非都能如图1那样很容易地找出上述的各特征点,尤其是参考节箍波,这就给准确计算动液面深度带来困难,有时甚至根本无法计算。因此对传感器输出信号的滤波处理成为准确计算动液面深度的关键。

3 传统的动液面深度测试仪结构

  目前普遍采用的动液面深度测试仪有如图2所示的基于模拟电路的结构和如图3所示的基于微控制器的结构。

图2 基于模拟电路的动液面深度测试仪原理框图

图3 基于微控制器的动液面深度测试仪原理框图

  在图2的结构中,微音器捡拾由炮枪发出并经过井管接头和油层表面反射后返回到井口的低频声波信号,该信号经放大器放大后进入两个窄带滤波器:带通滤波器 bpf和低通滤波器lpf。带通滤波器的输出即为节箍波信号,低通滤波器的输出为液面波信号。数据采集由驱动电路控制绘图笔在纸带上绘制节箍波和液面波曲线来完成。井口位置、液面位置、参考节箍波起点、参考节箍波终点等特征位置的提取及动液面深度与井管内平均声速的计算完全由技术人员手工完成。

  在图3的结构中,模拟信号的捡拾、放大和滤波部分与图2所示的结构完全相同,但数据采集部分由微控制器系统完成。微控制器系统由微控制器、a/d转换器、存储器及显示和打印接口组成。在该结构中只要找出各特征位置,则动液面深度与声速的计算可由微控制器自动完成。在采集到的波形较理想的情况下,特征位置的提取可以在数据采集结束后由微控制器自动完成,但多数情况下由于滤波效果不好,使得自动提取的特征位置不准确,需要技术人员手工干预。

  这两种结构虽然在数据采集方式上有较大不同,但所采集到的波形的好坏均取决于信号处理通道中两个模拟滤波器的频率响应特性。由于这两路信号的频带都很窄,这就导致了两个滤波器在实现上需要较高的阶数,又由于高阶滤波器对器件参数的变化较敏感,因而给其设计和调试带来较大困难。

4 基于数字信号处理器的动液面深度测试仪结构

  基于数字信号处理器的动液面深度测试仪结构如图4所示。微音器输出信号经过前置放大器和防混叠滤波器后进入a/d转换器,a/d转换的结果送入数字信号处理器进行数字滤波处理和采样频率变换,然后存入非易失性存储器,以便进行特征位置提取、动液面深度计算、井管内声速计算、波形显示和打印及其它事后处理。

t64-1.gif (3588 bytes)

潘琢金 朱国新 

  摘 要:本文主要介绍数字信号处理器及数字信号处理技术在动液面深度测试中的应用,并与传统实现方案进行比较。
  关键词:dsp 数据采集 数字滤波 动液面深度

1 引言

  动液面深度是油机井的井口到井下油层表面的距离,是抽油机井定期测试中的一个重要参数。由动液面深度还可计算出井管内的平均声速。动液面深度、井管内的平均声速与其它测试项目的结果相结合可以充分反映抽油机井的工作状态和产量情况,为油井的诊断和维护提供依据。

2 动液面深度测试原理

  动液面深度测试仪器通过采集由安装在井口的炮枪发出并经过井管接头反射的节箍波信号和经过油层表面反射的液面波信号(如图1所示),找出井口位置、动液面位置及基准节箍波,用公式(1)来计算动液面深度。

图1 节箍波和液面波波形示意图

       (1)

  公式(1)中a、b、c、d分别代表井口位置、液面位置、参考节箍波起点和参考节箍波终点,l为单节井管的长度,n为介于c、d之间的参考节箍波的个数。由于每个节箍波对应一节井管,因此n就是c、d之间的井管个数。
  由于传感器本身的噪声、环境噪声等多种噪声源的存在,所采集到的波形并非都能如图1那样很容易地找出上述的各特征点,尤其是参考节箍波,这就给准确计算动液面深度带来困难,有时甚至根本无法计算。因此对传感器输出信号的滤波处理成为准确计算动液面深度的关键。

3 传统的动液面深度测试仪结构

  目前普遍采用的动液面深度测试仪有如图2所示的基于模拟电路的结构和如图3所示的基于微控制器的结构。

图2 基于模拟电路的动液面深度测试仪原理框图

图3 基于微控制器的动液面深度测试仪原理框图

  在图2的结构中,微音器捡拾由炮枪发出并经过井管接头和油层表面反射后返回到井口的低频声波信号,该信号经放大器放大后进入两个窄带滤波器:带通滤波器 bpf和低通滤波器lpf。带通滤波器的输出即为节箍波信号,低通滤波器的输出为液面波信号。数据采集由驱动电路控制绘图笔在纸带上绘制节箍波和液面波曲线来完成。井口位置、液面位置、参考节箍波起点、参考节箍波终点等特征位置的提取及动液面深度与井管内平均声速的计算完全由技术人员手工完成。

  在图3的结构中,模拟信号的捡拾、放大和滤波部分与图2所示的结构完全相同,但数据采集部分由微控制器系统完成。微控制器系统由微控制器、a/d转换器、存储器及显示和打印接口组成。在该结构中只要找出各特征位置,则动液面深度与声速的计算可由微控制器自动完成。在采集到的波形较理想的情况下,特征位置的提取可以在数据采集结束后由微控制器自动完成,但多数情况下由于滤波效果不好,使得自动提取的特征位置不准确,需要技术人员手工干预。

  这两种结构虽然在数据采集方式上有较大不同,但所采集到的波形的好坏均取决于信号处理通道中两个模拟滤波器的频率响应特性。由于这两路信号的频带都很窄,这就导致了两个滤波器在实现上需要较高的阶数,又由于高阶滤波器对器件参数的变化较敏感,因而给其设计和调试带来较大困难。

4 基于数字信号处理器的动液面深度测试仪结构

  基于数字信号处理器的动液面深度测试仪结构如图4所示。微音器输出信号经过前置放大器和防混叠滤波器后进入a/d转换器,a/d转换的结果送入数字信号处理器进行数字滤波处理和采样频率变换,然后存入非易失性存储器,以便进行特征位置提取、动液面深度计算、井管内声速计算、波形显示和打印及其它事后处理。

t64-1.gif (3588 bytes)

相关IC型号
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!