位置:51电子网 » 技术资料 » 电源技术

新型小电流接地故障选线装置的设计

发布时间:2008/5/27 0:00:00 访问次数:449

        

    

    

     摘 要: 在分析了小电流接地系统选线困难的主要原因的基础上,设计了一种针对暂态量算法的新型选线装置。该装置采用tms320vc5402 dsp为cpu,很好地满足了暂态算法对硬件的要求,实验表明本装置具有很好的应用价值。 关键词: 小电流接地系统;故障选线;暂态算法 引言 配电网中性点采用小电流接地方式有着一系列的优点,所以被很多国家的配电系统采用。但是由于小电流接地电网单相接地时故障电流非常小,单相接地保护问题一直没有很好地解决。事实上采用常规继电保护装置根本无法检测出故障线路,故障选线必须采用专用选线装置。这种专用装置80年代就已经在我国诞生,但由于选线问题的复杂性,这些装置选线正确率非常低,以至于还得采用手动拉路的办法选线[1]。 我国现有的选线装置在理论上多采用零序电流高次(以五次为主)谐波原理来实现故障选线。但是,由于装置要使用的谐波分量在信号中所占比例较小,难于分离和提取,以及负荷的谐波干扰,使基于谐波原理的装置在实际运行中出现误判。其余多数选线方法都是基于故障后的稳态信号进行分析,但小电流接地电网稳态时的接地电流很小,使基于幅值比较的保护选线精度降低,基于相位比较的保护容易误选[2,3]。 鉴于存在的这些问题和生产实际的需要,我们设计了这套故障选线装置。它利用小波变换提取暂态突变信号中的特征分量,应用暂态信息进行选线,解决了传统选线方法利用稳态信息进行选线准确率低的问题,增强了抗干扰能力。此外本装置适用于所有小电流接地系统,包括只装设两相电流互感器的小电流接地系统,克服了以往提出的多数选线方法在系统只装设两相电流互感器的情况下失效的缺陷。 1系统的软硬件设计原理 1.1选线困难的原因 小电流接地电网选线困难的主要原因是单相接地时故障电流为线路对地电容电流,数值非常小,在故障前后的变化量非常微弱,此外单相接地故障状况复杂, 不同系统在馈线长度、中性点接地方式等方面都有较大差异,而且系统运行方式多变,要求选线装置有较高的灵活性和适应性[4]。 1.2小波算法[5~7] 小波分析是一种新型时频变换理论,它与fourier分析最大的不同点在于给待处理的信号加上了一个“时频”窗口,并能根据信号频率高低自动调节窗口的大小,以确保捕捉到信号中希望得到的有用信息。同时小波变换对于分析突变信号特别有效。这也是fourier分析所不及的。由于单相接地故障信号可能包含许多尖峰或突变部分,同时也包含有许多噪声干扰,对这种非平稳信号的消噪,用传统的傅立叶变换分析显得无能为力,因为傅立叶分析是将信号完全在频域中进行分析,信号在时间轴上的任何一个突变,都会影响信号的整个谱图。而小波分析能够同时在时频域中对信号进行分析,且有“自动变焦”功能,所以它能有效地区分信号中的突变部分和噪声。

      

     实际运用中,连续小波需要离散化。这一离散化是针对连续的尺度参数a和连续的平移参数b的,而不是针对时间变量t的。 对应的离散小波函数ψj,k(t):

      

     本装置利用小波变换把一个信号分解成不同尺度和位置的小波,选用合适的小波和小波基对暂态电流的特征分量进行小波变换后,通过比较各回线路暂态信号小波变换模极大值原理来实现故障选线。从幅值上看,非故障线路的电流行波信号仅为故障线路行波的透射分量,因此相应的小波变换模极大值也较小,而故障线路的电流行波信号在小波变换下,其模极大值最大。采用零序电压(u0)的变化量启动选线,u0的突变时刻即为故障发生时刻。具体选线方案如下。

     1) 由于平行多导线间存在电磁耦合,分析计算时可用相模变换对其进行解耦,对于a、c相故障,取a、c相电流故障前半周期、故障后两个周期的电流数据并计算其β模电流[8];对于b相故障则取a相电流故障前后各两周期数据并计算其突变量。

     2) 用基于stein无偏风险估计理论的阈值选取算法[9]对n条线路的β模电流(a、c相故障)或a相电流突变量(b相故障)进行消噪处理。

     3) 然后根据mallat算法,使用daubechies3小波对消噪后的信号进行多尺度小波变换,各尺度小波变换系数定义为cdjk(j=1,2,…,x; k=1,2,…,n)。其中,j为分解尺度,x为小波分解频带中恰不包含工频分量的分解尺度,k为线路号。

     4) 分别计算各回线路|cdjk|,求出各条线路最大者所在的小波分解尺度j;将j相对密集的所在

        

    

    

     摘 要: 在分析了小电流接地系统选线困难的主要原因的基础上,设计了一种针对暂态量算法的新型选线装置。该装置采用tms320vc5402 dsp为cpu,很好地满足了暂态算法对硬件的要求,实验表明本装置具有很好的应用价值。 关键词: 小电流接地系统;故障选线;暂态算法 引言 配电网中性点采用小电流接地方式有着一系列的优点,所以被很多国家的配电系统采用。但是由于小电流接地电网单相接地时故障电流非常小,单相接地保护问题一直没有很好地解决。事实上采用常规继电保护装置根本无法检测出故障线路,故障选线必须采用专用选线装置。这种专用装置80年代就已经在我国诞生,但由于选线问题的复杂性,这些装置选线正确率非常低,以至于还得采用手动拉路的办法选线[1]。 我国现有的选线装置在理论上多采用零序电流高次(以五次为主)谐波原理来实现故障选线。但是,由于装置要使用的谐波分量在信号中所占比例较小,难于分离和提取,以及负荷的谐波干扰,使基于谐波原理的装置在实际运行中出现误判。其余多数选线方法都是基于故障后的稳态信号进行分析,但小电流接地电网稳态时的接地电流很小,使基于幅值比较的保护选线精度降低,基于相位比较的保护容易误选[2,3]。 鉴于存在的这些问题和生产实际的需要,我们设计了这套故障选线装置。它利用小波变换提取暂态突变信号中的特征分量,应用暂态信息进行选线,解决了传统选线方法利用稳态信息进行选线准确率低的问题,增强了抗干扰能力。此外本装置适用于所有小电流接地系统,包括只装设两相电流互感器的小电流接地系统,克服了以往提出的多数选线方法在系统只装设两相电流互感器的情况下失效的缺陷。 1系统的软硬件设计原理 1.1选线困难的原因 小电流接地电网选线困难的主要原因是单相接地时故障电流为线路对地电容电流,数值非常小,在故障前后的变化量非常微弱,此外单相接地故障状况复杂, 不同系统在馈线长度、中性点接地方式等方面都有较大差异,而且系统运行方式多变,要求选线装置有较高的灵活性和适应性[4]。 1.2小波算法[5~7] 小波分析是一种新型时频变换理论,它与fourier分析最大的不同点在于给待处理的信号加上了一个“时频”窗口,并能根据信号频率高低自动调节窗口的大小,以确保捕捉到信号中希望得到的有用信息。同时小波变换对于分析突变信号特别有效。这也是fourier分析所不及的。由于单相接地故障信号可能包含许多尖峰或突变部分,同时也包含有许多噪声干扰,对这种非平稳信号的消噪,用传统的傅立叶变换分析显得无能为力,因为傅立叶分析是将信号完全在频域中进行分析,信号在时间轴上的任何一个突变,都会影响信号的整个谱图。而小波分析能够同时在时频域中对信号进行分析,且有“自动变焦”功能,所以它能有效地区分信号中的突变部分和噪声。

      

     实际运用中,连续小波需要离散化。这一离散化是针对连续的尺度参数a和连续的平移参数b的,而不是针对时间变量t的。 对应的离散小波函数ψj,k(t):

      

     本装置利用小波变换把一个信号分解成不同尺度和位置的小波,选用合适的小波和小波基对暂态电流的特征分量进行小波变换后,通过比较各回线路暂态信号小波变换模极大值原理来实现故障选线。从幅值上看,非故障线路的电流行波信号仅为故障线路行波的透射分量,因此相应的小波变换模极大值也较小,而故障线路的电流行波信号在小波变换下,其模极大值最大。采用零序电压(u0)的变化量启动选线,u0的突变时刻即为故障发生时刻。具体选线方案如下。

     1) 由于平行多导线间存在电磁耦合,分析计算时可用相模变换对其进行解耦,对于a、c相故障,取a、c相电流故障前半周期、故障后两个周期的电流数据并计算其β模电流[8];对于b相故障则取a相电流故障前后各两周期数据并计算其突变量。

     2) 用基于stein无偏风险估计理论的阈值选取算法[9]对n条线路的β模电流(a、c相故障)或a相电流突变量(b相故障)进行消噪处理。

     3) 然后根据mallat算法,使用daubechies3小波对消噪后的信号进行多尺度小波变换,各尺度小波变换系数定义为cdjk(j=1,2,…,x; k=1,2,…,n)。其中,j为分解尺度,x为小波分解频带中恰不包含工频分量的分解尺度,k为线路号。

     4) 分别计算各回线路|cdjk|,求出各条线路最大者所在的小波分解尺度j;将j相对密集的所在

相关IC型号

热门点击

 

推荐技术资料

Seeed Studio
    Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!