位置:51电子网 » 技术资料 » 电源技术

功率芯片与纳米技术携手并进

发布时间:2008/5/27 0:00:00 访问次数:481

        

    

    

     reno rossetti/飞兆半导体电脑运算企业策略总监 系统单芯片(soc)公司纷纷预测: 在未来的几年里,完整的信号回路(数字+模拟+存储器),甚至gsm系统(包括电源管理)将集成于一体。随着纳米级光刻技术(最小尺寸小于100nm)的发展,推动了集成技术的进步,事实上面临了产品自身的技术限制。 然而,在一个芯片上集成的晶体管越多,它们的工作电压则越低,例如,0.13um级芯片的工作电压仅为1-2v!另一方面,功率芯片制造商正不断开发能够处理高电压和大电流的技术。将交流电网电压转换至中间母线需可靠的设备提供数百伏电压和数安培电流。同时,再由母线电压转换至最终负载电压则需要数百安培电流的低压设备。 上述功率转换已在个人电脑实现了,它先将线路功率因数校正(pfc)电压降至电源盒外的母线电压,再降至主板的通用低电压,这充分展示了新的高电压和大电流半导体技术及架构的效用。为了描述功率转换技术的发展历程,本文选取飞兆半导体公司(fairchild semiconductor)的单芯片控制器—— ml4803 (pfc/pwm)组合芯片,及其相关的用于中间母线电压ac/dc转换的分立晶体管作为应用范例。此外,本文还以飞兆半导体的fan5092降压转换器为例,介绍母线电压转换为主板低电压的dc/dc转换方法。最后还将讨论pfc/pwm和dc/dc 转换器的未来发展趋势。 离线控制 谐波极限值和功率因数校正 当电气负载(如pc)消耗的电流与输入电压(ac线路)同相,且电流不失真(正弦波)时,交流电网的功率输出可达到最佳状态。为此,作为欧洲标准的iec 6100-2-3规定了各类设备的谐波极限值。例如,所有消耗功率超过75w的个人电脑的谐波都必须处于或低于图1所示的曲线。目前,台式机的消耗功率在140w至250w之间,这意味着所有销售到欧洲的pc都必须符合上述标准。当这项标准确立后,世界其它地区都将逐步按照欧洲这一先进标准执行。 图1. iec 61000-3-2谐波电流极限值 图1所示为欧洲规范的一个方面。请注意:谐波越高,限制越严格。但这些谐波的能量也越少,更易于滤波。根据该规范,允许谐波电流的最大输出大于600w,从而在更高功率下符合这一规范,更具挑战性。 功率因数(pf)是与线路提供功率的综合质量相关的一个总体参数,它与输入电流总谐波失真 (thd) 的关系如下式所示: pf = cosj /(1+thd2)1/2 [1] 式中j是线路电压和消耗电流间的相位差。无相位差(j=0),且无失真(thd=0)时,pf=1。由于分子ôcosjô在0到1之间,而分母总是大于或等于1,因而pf <=1。 由于iec 61000-3-2标准规定了thd的谐波分量,thd和pf因此都不足以度量性能。实际上,这一规范(如图1)的度量和遵从标准为谐波失真参数,这个参数以及达到这一规范的技术一般被划分到“pfc”或“功率因素校正”的类别中。 理论上,pf表达式中的cosj既可为正,也可为负。请记住,负的cosj值相当于负载电路对线路供电的情形。在基于二极管桥的整流电路中,这种情形是不可能发生的。 谐波极限值规范的约束 将功率从交流电网引至负载的标准方法是直接在负载两端跨接二极管桥整流器。(图2)。 图3. 电源线路(pline=vline*iline)具有双倍频率 如果电容不存在,电压和电流则不失真,无相位差,可整流为正弦波,且pf=1 (图3)。在这种情况下,输入到负载上的功率由倍频、零最小和瞬时值波形构成: p(t)= (v2/r)*sen2wt = (1/2)*(v2/r)*(1-cos2wt) [2] 式中v是线路电压的幅度,r为负载,w为线路的角频率2pf,f=50hz或60hz。由方程[2]可得实际或平均的功率为: pave=(1/2)*v2/r = vrms2/r [3] 随时间变化的零平均脉动功率为: ppuls = -(1/2)*(v2/r)*cos2w [4] 这个简单例子描述了理想的ac线路整流电路模型。而另一方面,该电路没有能量存储功能,整流器输出端功率具有ac线路的倍频分量。 在这一理想化的模型中,典型的负载实际上需要恒定(dc)功率。因此,它必须具有大容量的能量存储元件,一般采用处理输入功率p(t)和dc输出功率pave差异的电解电容来实现。 在该电路中添加一个小电容c (图2中的虚线),将使通过负载的电压变得平滑,纹波减少,但由于电流波形严重偏离了正弦波而使pfc减小(图4)! 图2中的电路(带电容)代表iec-61000-3-2规范制订以前,多数商业设备所采用的常规无pfc电路架构,pfc技术是在低输入谐波电流量和严格调节输出电压下,维持输入和输出功率匹配的方法。 pfc架构 pfc的一般架构如图5所示。正如前文中讨论,pfc级可实现线路电压和电流的良好匹配。 图5.pfc架构的范例 在完全平衡的条件下(pf=1),我们会发现ac线路侧的波形如图3 (a)所示。而在整流侧

        

    

    

     reno rossetti/飞兆半导体电脑运算企业策略总监 系统单芯片(soc)公司纷纷预测: 在未来的几年里,完整的信号回路(数字+模拟+存储器),甚至gsm系统(包括电源管理)将集成于一体。随着纳米级光刻技术(最小尺寸小于100nm)的发展,推动了集成技术的进步,事实上面临了产品自身的技术限制。 然而,在一个芯片上集成的晶体管越多,它们的工作电压则越低,例如,0.13um级芯片的工作电压仅为1-2v!另一方面,功率芯片制造商正不断开发能够处理高电压和大电流的技术。将交流电网电压转换至中间母线需可靠的设备提供数百伏电压和数安培电流。同时,再由母线电压转换至最终负载电压则需要数百安培电流的低压设备。 上述功率转换已在个人电脑实现了,它先将线路功率因数校正(pfc)电压降至电源盒外的母线电压,再降至主板的通用低电压,这充分展示了新的高电压和大电流半导体技术及架构的效用。为了描述功率转换技术的发展历程,本文选取飞兆半导体公司(fairchild semiconductor)的单芯片控制器—— ml4803 (pfc/pwm)组合芯片,及其相关的用于中间母线电压ac/dc转换的分立晶体管作为应用范例。此外,本文还以飞兆半导体的fan5092降压转换器为例,介绍母线电压转换为主板低电压的dc/dc转换方法。最后还将讨论pfc/pwm和dc/dc 转换器的未来发展趋势。 离线控制 谐波极限值和功率因数校正 当电气负载(如pc)消耗的电流与输入电压(ac线路)同相,且电流不失真(正弦波)时,交流电网的功率输出可达到最佳状态。为此,作为欧洲标准的iec 6100-2-3规定了各类设备的谐波极限值。例如,所有消耗功率超过75w的个人电脑的谐波都必须处于或低于图1所示的曲线。目前,台式机的消耗功率在140w至250w之间,这意味着所有销售到欧洲的pc都必须符合上述标准。当这项标准确立后,世界其它地区都将逐步按照欧洲这一先进标准执行。 图1. iec 61000-3-2谐波电流极限值 图1所示为欧洲规范的一个方面。请注意:谐波越高,限制越严格。但这些谐波的能量也越少,更易于滤波。根据该规范,允许谐波电流的最大输出大于600w,从而在更高功率下符合这一规范,更具挑战性。 功率因数(pf)是与线路提供功率的综合质量相关的一个总体参数,它与输入电流总谐波失真 (thd) 的关系如下式所示: pf = cosj /(1+thd2)1/2 [1] 式中j是线路电压和消耗电流间的相位差。无相位差(j=0),且无失真(thd=0)时,pf=1。由于分子ôcosjô在0到1之间,而分母总是大于或等于1,因而pf <=1。 由于iec 61000-3-2标准规定了thd的谐波分量,thd和pf因此都不足以度量性能。实际上,这一规范(如图1)的度量和遵从标准为谐波失真参数,这个参数以及达到这一规范的技术一般被划分到“pfc”或“功率因素校正”的类别中。 理论上,pf表达式中的cosj既可为正,也可为负。请记住,负的cosj值相当于负载电路对线路供电的情形。在基于二极管桥的整流电路中,这种情形是不可能发生的。 谐波极限值规范的约束 将功率从交流电网引至负载的标准方法是直接在负载两端跨接二极管桥整流器。(图2)。 图3. 电源线路(pline=vline*iline)具有双倍频率 如果电容不存在,电压和电流则不失真,无相位差,可整流为正弦波,且pf=1 (图3)。在这种情况下,输入到负载上的功率由倍频、零最小和瞬时值波形构成: p(t)= (v2/r)*sen2wt = (1/2)*(v2/r)*(1-cos2wt) [2] 式中v是线路电压的幅度,r为负载,w为线路的角频率2pf,f=50hz或60hz。由方程[2]可得实际或平均的功率为: pave=(1/2)*v2/r = vrms2/r [3] 随时间变化的零平均脉动功率为: ppuls = -(1/2)*(v2/r)*cos2w [4] 这个简单例子描述了理想的ac线路整流电路模型。而另一方面,该电路没有能量存储功能,整流器输出端功率具有ac线路的倍频分量。 在这一理想化的模型中,典型的负载实际上需要恒定(dc)功率。因此,它必须具有大容量的能量存储元件,一般采用处理输入功率p(t)和dc输出功率pave差异的电解电容来实现。 在该电路中添加一个小电容c (图2中的虚线),将使通过负载的电压变得平滑,纹波减少,但由于电流波形严重偏离了正弦波而使pfc减小(图4)! 图2中的电路(带电容)代表iec-61000-3-2规范制订以前,多数商业设备所采用的常规无pfc电路架构,pfc技术是在低输入谐波电流量和严格调节输出电压下,维持输入和输出功率匹配的方法。 pfc架构 pfc的一般架构如图5所示。正如前文中讨论,pfc级可实现线路电压和电流的良好匹配。 图5.pfc架构的范例 在完全平衡的条件下(pf=1),我们会发现ac线路侧的波形如图3 (a)所示。而在整流侧

相关IC型号

热门点击

 

推荐技术资料

Seeed Studio
    Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!