位置:51电子网 » 技术资料 » 传感与控制

磁悬浮列车测速定位系统的设计与实现

发布时间:2008/5/27 0:00:00 访问次数:766

作者:长沙国防科技大学磁悬浮中心(410073)周文武 龙志强 常文森

来源:《电子技术应用》

摘要:交叉感应回线测速定位的原理;为了弥补由单个线圈组成的车载线圈在磁悬浮列车恶劣的电磁环境中抗干扰不足的问题,提出了由两个交充叉线圈组成车载线圈的设计方案。 关键词:交叉感应回线 测速 定位 磁悬浮列车是新一代交通工具,具有速度快、安全性高、环保等诸多优点。为了充分实现上述优点,列车必须具有超速保护、自动联锁和闭塞等功能。这样,速度和位置就是两个必不可少的参量。 由于磁悬浮列车是无轮子的,运行时车与轨道不接触,列车的测速定位与传统的轮轨铁路测速不同。一般说来,实现磁悬浮列车的测速定位大致有三种方法:(1)微波定位测速;(2)接近传感器定位测速;(3)交叉感应回线定位测速。第一种方法由于微波传播受到多径传播干扰,恶劣的天气对其性能影响较大,因此对复杂地形适应能力不强,而且它的设备复杂、成本高;第二种方法在我校的试验线上已经应用,但它存在一些问题,如精度受轨间距是否相等的影响、转弯处误差大等。日本、德国等国家采用了不同的方案来实现列车的测速定位,而我国在这方面的研究相对来说较少。本文主要针对磁悬浮列车恶劣的电磁环境,在交叉感应回线的基础上,提出了由两个线圈组成车载线圈的设计方案。 1 设计的基本原理 交叉感应回线是使用电缆按一定间隔绕制成一个环路设于轨道上而形成的。图1为交叉感应线和位置脉冲图。其中,虚线和实线中的电流方向相反,大小相同。它在相邻回路的感应电势相反,当基通入交流电流时,就沿着轨道形成变化的磁场。根据法拉第电磁应定律e=l(dφ/dt)可知感应电势与磁通成正比。由于磁通与磁场穿过线圈的有效面积成正比,当车乳汁线圈与环路有重叠时,车载线圈中产生感应电势,因此重叠的有效面积越大感应电势就越高。车载线圈处于交叉感应回线回路的正上方时,产生的感应电压最大,而位于相邻回路的交叉部分时,其感应电压为零,所以列车连续移动时,车载线圈输出的电压经滤波整形后就形成位置脉冲,提供位置信息。把位置的变化量与所用时间相比就可以得到速度。 整套装置包括两部分:交叉感应回线及其激磁源与车载线圈及处理电路。激磁源是一个交流电源源,为感应回线提供交流信号,然后由感应回线发送出去;车载线圈感应接收感应回线发送的信号,然后由处理电路转化成数字信号送单片机处理、传送、显示。其原理框图见图2。 2 系统抗干扰的实现及其数学推导 大量实验表明,在比较理想的环境中采用单个线圈组成的车载线圈可以得到正确结果,同时也验证了该原理的正确性。但是在现场实验中却出现了一些问题,其中最重要的是噪声把信号全部淹没,根本得不到有用的位置脉冲。噪声主要来源有:悬浮控制器、电磁铁、牵引直线电机以及别的一些电磁设备;其特点是:强度高、频谱宽、可通过车载线圈感应调制进行系统。为了解决干扰所带来的问题,提出了回线交叉、由两个交叉线圈取代单线圈以组成车载线圈的方案。 2.1 车载线圈 车载线圈由两个线圈交叉相连组成,这两个线圈位于同一平面内,相隔一定距离,该距离由交叉感应回线的情况确定。车载线圈与后面一些电路组成谐振接收回路。根据电磁感应定律得车载线圈中某一圈的感应电势为: e(t)=l[dφ(t)/dt] 谐振电路的传递函数模型为: g(s)=ks/s2+2ξs+ω0 2 谐振回路的输出为: y=l -1{g(s)l[e(t)]} =l -1{g(s)l[dφ(t)/dt]} 其中,l表示拉氏变换,l -1表示拉氏逆变换。 为了表态上式,在此定义一个算子g(x(

作者:长沙国防科技大学磁悬浮中心(410073)周文武 龙志强 常文森

来源:《电子技术应用》

摘要:交叉感应回线测速定位的原理;为了弥补由单个线圈组成的车载线圈在磁悬浮列车恶劣的电磁环境中抗干扰不足的问题,提出了由两个交充叉线圈组成车载线圈的设计方案。 关键词:交叉感应回线 测速 定位 磁悬浮列车是新一代交通工具,具有速度快、安全性高、环保等诸多优点。为了充分实现上述优点,列车必须具有超速保护、自动联锁和闭塞等功能。这样,速度和位置就是两个必不可少的参量。 由于磁悬浮列车是无轮子的,运行时车与轨道不接触,列车的测速定位与传统的轮轨铁路测速不同。一般说来,实现磁悬浮列车的测速定位大致有三种方法:(1)微波定位测速;(2)接近传感器定位测速;(3)交叉感应回线定位测速。第一种方法由于微波传播受到多径传播干扰,恶劣的天气对其性能影响较大,因此对复杂地形适应能力不强,而且它的设备复杂、成本高;第二种方法在我校的试验线上已经应用,但它存在一些问题,如精度受轨间距是否相等的影响、转弯处误差大等。日本、德国等国家采用了不同的方案来实现列车的测速定位,而我国在这方面的研究相对来说较少。本文主要针对磁悬浮列车恶劣的电磁环境,在交叉感应回线的基础上,提出了由两个线圈组成车载线圈的设计方案。 1 设计的基本原理 交叉感应回线是使用电缆按一定间隔绕制成一个环路设于轨道上而形成的。图1为交叉感应线和位置脉冲图。其中,虚线和实线中的电流方向相反,大小相同。它在相邻回路的感应电势相反,当基通入交流电流时,就沿着轨道形成变化的磁场。根据法拉第电磁应定律e=l(dφ/dt)可知感应电势与磁通成正比。由于磁通与磁场穿过线圈的有效面积成正比,当车乳汁线圈与环路有重叠时,车载线圈中产生感应电势,因此重叠的有效面积越大感应电势就越高。车载线圈处于交叉感应回线回路的正上方时,产生的感应电压最大,而位于相邻回路的交叉部分时,其感应电压为零,所以列车连续移动时,车载线圈输出的电压经滤波整形后就形成位置脉冲,提供位置信息。把位置的变化量与所用时间相比就可以得到速度。 整套装置包括两部分:交叉感应回线及其激磁源与车载线圈及处理电路。激磁源是一个交流电源源,为感应回线提供交流信号,然后由感应回线发送出去;车载线圈感应接收感应回线发送的信号,然后由处理电路转化成数字信号送单片机处理、传送、显示。其原理框图见图2。 2 系统抗干扰的实现及其数学推导 大量实验表明,在比较理想的环境中采用单个线圈组成的车载线圈可以得到正确结果,同时也验证了该原理的正确性。但是在现场实验中却出现了一些问题,其中最重要的是噪声把信号全部淹没,根本得不到有用的位置脉冲。噪声主要来源有:悬浮控制器、电磁铁、牵引直线电机以及别的一些电磁设备;其特点是:强度高、频谱宽、可通过车载线圈感应调制进行系统。为了解决干扰所带来的问题,提出了回线交叉、由两个交叉线圈取代单线圈以组成车载线圈的方案。 2.1 车载线圈 车载线圈由两个线圈交叉相连组成,这两个线圈位于同一平面内,相隔一定距离,该距离由交叉感应回线的情况确定。车载线圈与后面一些电路组成谐振接收回路。根据电磁感应定律得车载线圈中某一圈的感应电势为: e(t)=l[dφ(t)/dt] 谐振电路的传递函数模型为: g(s)=ks/s2+2ξs+ω0 2 谐振回路的输出为: y=l -1{g(s)l[e(t)]} =l -1{g(s)l[dφ(t)/dt]} 其中,l表示拉氏变换,l -1表示拉氏逆变换。 为了表态上式,在此定义一个算子g(x(

相关IC型号

热门点击

 

推荐技术资料

滑雪绕桩机器人
   本例是一款非常有趣,同时又有一定调试难度的玩法。EDE2116AB... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!