电容模块在缓冲电路中的应用
发布时间:2007/9/8 0:00:00 访问次数:1231
摘要:讨论了IGBT模块缓冲电路的缓冲原理,给出了三种通用的IGBT缓冲电容,并介绍了美国CDE公司的三种电容模块的基本参数和特点以及在缓冲电路中的应用。
关键词:IGBT 缓冲电容 电容模块
1 引言
众所周知,在电力电子功率器件的应用电路中,无一例外地都要设置缓冲电路,即吸收电路。因为全控制器件在电路工作时莫名其妙损坏的原因虽然很多,但缓冲电路和缓冲电容选择不当是不可忽略的重要原因所在。
2 缓冲原理
电路中器件的损坏,一般都是在器件在开关过程中遭受了过大的di/dt、du/dt或瞬时功耗的冲击而造成的。缓冲电路的作用就是改变器件的开关轨迹,控制各种瞬态时的过电压,以降低器件开关损耗来确保器件的安全。
图1所示为GTR在驱动感性负载时的开关波形。不难看出,在开通和送断过程中的某一时刻,GTR集电极电压Uc和集电极电流ic将同时达到最大值,此时瞬时功耗也最大。加入缓冲电路可将这一开关功耗转移到相关的电阻上消耗掉,从而达到保证器件安全运行的目的。
典型复合式缓冲电路如图2所示。当GTR关断时,负载电流经缓冲二极管D向缓冲电容C充电,同时集电极电流ic逐渐减少。由于电容C两端电压不能突变,所以有效地限制了GTR上集电极电压的上升率du/dt,也避免了集电极电压Uc和集电极电流ic同时达到最大值。而GTR集电极上的母线电感以及缓冲电路元件内部的杂散电感在GTR开通时储存的能量LI2/2,将转换成CV2/2储存在缓冲电容C中。因此当GTR开通时,集电极母线电感以及其它杂散电感,又有效地限制了GTR集电极上的电流上升率di/dt,从而也避免了集电极电压Uc和集电极电流ic同时达到最大值。这样,缓冲电容C通过外接电阻R和GTR开关放电,以使其储存的开关能量在外接电阻和电路元件内部电阻上消耗掉。从而将GTR运行时产生的开关损耗转移到缓冲电路,并在相关电阻上以热的形式消耗掉,经达到保护GTR安全运行的目的。
缓冲电容C的容量不同,其缓冲效果也不相同。图3画出了不同容量下GTR电容、电压的关断为缓冲电容C容量较小时的波形,图3( c)为缓冲电容C容量较大时的波形。不难看出,无缓冲电容时,集电极电压上升时间极短,致使电流、电压同时达到最大,因而瞬时功耗最大。缓冲电容C容量较小时,集电极电流下降至零之前,其电压已上升至电源值,瞬时耗较大。缓冲电容C容量较大时,集电极电流下降至零之后,其电压才上升至电源值。因而瞬时功耗较小。
3 IGBT缓冲电路
通用的IGBT缓冲电路有图4所示的三种形式。其中,图4(a)为单只低电感吸收电容构成的缓冲电路,适用于小功率IGBT模块,用来对瞬变电压有效时的低成本控制,使用时一般将其接在C1和E2之间(两单元模块)或P和N之间(六单元模块)。图4(b)为RCD构成的缓冲电路,适用于较小功率的IGBT模块,缓冲二极管D可箝住瞬变电压,以抑制由于母线寄存电感引起的寄存振荡。其RC时间常数应设计为开关周期的1/3,即τ=T/3=1/3f。图4(c)为P型RCD和N型RCD构成的缓冲电路,适用于大功率IGBT模块,其功能类似于图4(b)缓冲电路,但其回路电感更小。若同时配合使用图4(a)缓冲电路,则可减小缓冲二极管的应力,从而使缓冲效果达到最佳。
IGBT采用缓冲电路后的典型关断电
摘要:讨论了IGBT模块缓冲电路的缓冲原理,给出了三种通用的IGBT缓冲电容,并介绍了美国CDE公司的三种电容模块的基本参数和特点以及在缓冲电路中的应用。
关键词:IGBT 缓冲电容 电容模块
1 引言
众所周知,在电力电子功率器件的应用电路中,无一例外地都要设置缓冲电路,即吸收电路。因为全控制器件在电路工作时莫名其妙损坏的原因虽然很多,但缓冲电路和缓冲电容选择不当是不可忽略的重要原因所在。
2 缓冲原理
电路中器件的损坏,一般都是在器件在开关过程中遭受了过大的di/dt、du/dt或瞬时功耗的冲击而造成的。缓冲电路的作用就是改变器件的开关轨迹,控制各种瞬态时的过电压,以降低器件开关损耗来确保器件的安全。
图1所示为GTR在驱动感性负载时的开关波形。不难看出,在开通和送断过程中的某一时刻,GTR集电极电压Uc和集电极电流ic将同时达到最大值,此时瞬时功耗也最大。加入缓冲电路可将这一开关功耗转移到相关的电阻上消耗掉,从而达到保证器件安全运行的目的。
典型复合式缓冲电路如图2所示。当GTR关断时,负载电流经缓冲二极管D向缓冲电容C充电,同时集电极电流ic逐渐减少。由于电容C两端电压不能突变,所以有效地限制了GTR上集电极电压的上升率du/dt,也避免了集电极电压Uc和集电极电流ic同时达到最大值。而GTR集电极上的母线电感以及缓冲电路元件内部的杂散电感在GTR开通时储存的能量LI2/2,将转换成CV2/2储存在缓冲电容C中。因此当GTR开通时,集电极母线电感以及其它杂散电感,又有效地限制了GTR集电极上的电流上升率di/dt,从而也避免了集电极电压Uc和集电极电流ic同时达到最大值。这样,缓冲电容C通过外接电阻R和GTR开关放电,以使其储存的开关能量在外接电阻和电路元件内部电阻上消耗掉。从而将GTR运行时产生的开关损耗转移到缓冲电路,并在相关电阻上以热的形式消耗掉,经达到保护GTR安全运行的目的。
缓冲电容C的容量不同,其缓冲效果也不相同。图3画出了不同容量下GTR电容、电压的关断为缓冲电容C容量较小时的波形,图3( c)为缓冲电容C容量较大时的波形。不难看出,无缓冲电容时,集电极电压上升时间极短,致使电流、电压同时达到最大,因而瞬时功耗最大。缓冲电容C容量较小时,集电极电流下降至零之前,其电压已上升至电源值,瞬时耗较大。缓冲电容C容量较大时,集电极电流下降至零之后,其电压才上升至电源值。因而瞬时功耗较小。
3 IGBT缓冲电路
通用的IGBT缓冲电路有图4所示的三种形式。其中,图4(a)为单只低电感吸收电容构成的缓冲电路,适用于小功率IGBT模块,用来对瞬变电压有效时的低成本控制,使用时一般将其接在C1和E2之间(两单元模块)或P和N之间(六单元模块)。图4(b)为RCD构成的缓冲电路,适用于较小功率的IGBT模块,缓冲二极管D可箝住瞬变电压,以抑制由于母线寄存电感引起的寄存振荡。其RC时间常数应设计为开关周期的1/3,即τ=T/3=1/3f。图4(c)为P型RCD和N型RCD构成的缓冲电路,适用于大功率IGBT模块,其功能类似于图4(b)缓冲电路,但其回路电感更小。若同时配合使用图4(a)缓冲电路,则可减小缓冲二极管的应力,从而使缓冲效果达到最佳。
IGBT采用缓冲电路后的典型关断电
热门点击
- FLJ--
- 电容模块在缓冲电路中的应用
- 超高速鉴频鉴相器AD9901
- 浅谈电子产品的可靠性设计
- EPC-755A微型光电编码器及其应用
- DS1302,HT1380时钟芯片与8301
- 万能三角函数转换器AD639及其应用
- HA16830F话音信号和忙音检测集成电路及
- 基于扫描线转换的快速等值线填充算法
- 数字信号完整性和信号恢复
推荐技术资料
- 泰克新发布的DSA830
- 泰克新发布的DSA8300在一台仪器中同时实现时域和频域分析,DS... [详细]