现代功率模块及器件应用技术(7)
发布时间:2007/4/23 0:00:00 访问次数:2123
8 功率模块的冷却
8.1 冷却装置、冷却介质和冷却方法
功率模块的通态损耗、开关损耗、截止损耗等所产生的温升须由散热器来降低。散热器的作用是增加功率模块的传热和辐射面积、扩张热流以及缓冲传热过程。
基于模块的绝缘性能, 一个系统的所有功率模块都可安装在一块共同的散热器上,该散热器同时还可当作结构部件,实现其他的功能(外壳、底座等)。
散热器的散热过程为:通过直接传导或借助于传热介质将热量传递到冷却介质。
传热介质可以是空气、水或者(在极少数情况下)绝缘油,通过其自身的重力或通过风扇以及泵来实现循环传热过程。
冷却介质可以是自然或被强制流动的空气、水及其混合液。
下面将主要讨论自然空气冷却(自然对流)、强制空气冷却以及仅含一种冷却介质的水冷系统。其他更为复杂的冷却方式,象热管或蒸发冷却,一般来说需要针对具体的应用做特别的没计。另外,在功率模块中油冷也几乎很少被用到。
在材料费用和加工费用允许的情况下,散热器材料应该具有尽可能好的导热系数λ。因此,金属铝(纯铝λ=247W/m·K)通常是优先被采用的材料。在要求特别高的场合有时也可以采用铜(λ=398W/m·K)。
值得注意的是导热系数与制造工艺以及所采用的合金有很大的关系。在实际应用中,多数散热器的导热系数λ大致在150W/m·K(铸造铝合金)和220W/m·K(AIMgSi挤压成型)之间。
热量的扩散对散热器的散热效率有着可观的影响。因此,对散热器根部厚度的优化、翼片的数目、翼片的高度以及翼片的厚度之间比例的合适选取显得相当重要:
1)散热器的根部是用于安装功率模块的、不含分岔的平面区域。该处与模块底板之间的温度梯度相对较小,有着明显的热扩散作用;
2)对于空气冷却散热器来说,其大部分热量是通过翼片以辐射和传导的方式传递到周边环境的。而对于水冷散热器来说,这一作用或多或少地是由具有特定结构的水通道来实现的。
由 Rthha=△T/Ptot=1/(αA) (40)
可得到 Q=αA△T=Ptot
式中:Q为散发的热量;
α为传导系数;
A为传热面积;
ΔT为与环境温度之间的温度差;
Ptot为需要带走的损耗;
Rthha为散热器的热阻。
如果采用较多的翼片,便可以增大传热面积,但前提是能够保证流体的顺畅流动,否则α会超比例下降。
从这一结论出发,自然冷却和强制冷却的优化条件便有所不同。
当功耗增加时,散热器温度增高,受热也就更加均匀。也就是说,有效热交换的面积在增加。
8.2 冷却装置的传热模型
在介绍功率模块的热性能时,等效热路中的散热器是由一个RC元件来描述的(Rthha,Zthha)。
然而,当功耗在t=0时刻从P=0跳跃到P=Pm时,散热器的动态热抗Zthha随时间t而变化的特性曲线显示出其具有多个时间常数。系统总热抗的特性曲线Zthha(t)可以通过将功率模块的热抗与模块一散热器的热抗相迭加而得到。
8.3 自然空冷(自然对流)
自然空冷多用于功耗低于50W的系统,以及不允许应用风扇或者器件的散热面积特别大的大功率系统。
一般来说,在自由对流时散热器的热阻往往大于功率模块的内部热阻。所以,芯片与冷却空气之间的温度差大部分降落在散热器上。在接近模块的散热器处的温度,常常高于强制风冷时的温度,例如,在90℃到100℃之间。由于功耗通常比较小,所以根部和翼片相对较薄,而且材料的传导系数对热性能的影响不是十分重要。翼片之间的距离应当足够地大,以便在空气的升力(温度差/密度)和摩擦力之间取得较好的折衷。将散热器表面黑化可以有效地改善热辐射性能。在安装面和环境空气之间的温度差为50 K时,黑化后的散热器热阻约降低15%。值得注意的是,上述表面处理并不影响模块底板和散热器之间的传热界面。
8.4 强制风冷
与自然空冷相比较,强制风冷时散热器的热阻可降低到1/5~1/15。
同自由对流相比,强制风冷时的α明显要大许多。当空气的入口温度为35℃时(参数表中的额定环境温度),强制风冷散热器的表面温度在额定运行时不应该大于80℃到90℃。
散热器材料的传导系数对冷却的效果影响极大。因此,建议选择较厚的根部和尽可能多的翼片数目。由于热量主要通过对流而散发,所以对于强制空冷来说,对散热器进行黑化处理几乎没有什么效果。
热阻Rt
8 功率模块的冷却
8.1 冷却装置、冷却介质和冷却方法
功率模块的通态损耗、开关损耗、截止损耗等所产生的温升须由散热器来降低。散热器的作用是增加功率模块的传热和辐射面积、扩张热流以及缓冲传热过程。
基于模块的绝缘性能, 一个系统的所有功率模块都可安装在一块共同的散热器上,该散热器同时还可当作结构部件,实现其他的功能(外壳、底座等)。
散热器的散热过程为:通过直接传导或借助于传热介质将热量传递到冷却介质。
传热介质可以是空气、水或者(在极少数情况下)绝缘油,通过其自身的重力或通过风扇以及泵来实现循环传热过程。
冷却介质可以是自然或被强制流动的空气、水及其混合液。
下面将主要讨论自然空气冷却(自然对流)、强制空气冷却以及仅含一种冷却介质的水冷系统。其他更为复杂的冷却方式,象热管或蒸发冷却,一般来说需要针对具体的应用做特别的没计。另外,在功率模块中油冷也几乎很少被用到。
在材料费用和加工费用允许的情况下,散热器材料应该具有尽可能好的导热系数λ。因此,金属铝(纯铝λ=247W/m·K)通常是优先被采用的材料。在要求特别高的场合有时也可以采用铜(λ=398W/m·K)。
值得注意的是导热系数与制造工艺以及所采用的合金有很大的关系。在实际应用中,多数散热器的导热系数λ大致在150W/m·K(铸造铝合金)和220W/m·K(AIMgSi挤压成型)之间。
热量的扩散对散热器的散热效率有着可观的影响。因此,对散热器根部厚度的优化、翼片的数目、翼片的高度以及翼片的厚度之间比例的合适选取显得相当重要:
1)散热器的根部是用于安装功率模块的、不含分岔的平面区域。该处与模块底板之间的温度梯度相对较小,有着明显的热扩散作用;
2)对于空气冷却散热器来说,其大部分热量是通过翼片以辐射和传导的方式传递到周边环境的。而对于水冷散热器来说,这一作用或多或少地是由具有特定结构的水通道来实现的。
由 Rthha=△T/Ptot=1/(αA) (40)
可得到 Q=αA△T=Ptot
式中:Q为散发的热量;
α为传导系数;
A为传热面积;
ΔT为与环境温度之间的温度差;
Ptot为需要带走的损耗;
Rthha为散热器的热阻。
如果采用较多的翼片,便可以增大传热面积,但前提是能够保证流体的顺畅流动,否则α会超比例下降。
从这一结论出发,自然冷却和强制冷却的优化条件便有所不同。
当功耗增加时,散热器温度增高,受热也就更加均匀。也就是说,有效热交换的面积在增加。
8.2 冷却装置的传热模型
在介绍功率模块的热性能时,等效热路中的散热器是由一个RC元件来描述的(Rthha,Zthha)。
然而,当功耗在t=0时刻从P=0跳跃到P=Pm时,散热器的动态热抗Zthha随时间t而变化的特性曲线显示出其具有多个时间常数。系统总热抗的特性曲线Zthha(t)可以通过将功率模块的热抗与模块一散热器的热抗相迭加而得到。
8.3 自然空冷(自然对流)
自然空冷多用于功耗低于50W的系统,以及不允许应用风扇或者器件的散热面积特别大的大功率系统。
一般来说,在自由对流时散热器的热阻往往大于功率模块的内部热阻。所以,芯片与冷却空气之间的温度差大部分降落在散热器上。在接近模块的散热器处的温度,常常高于强制风冷时的温度,例如,在90℃到100℃之间。由于功耗通常比较小,所以根部和翼片相对较薄,而且材料的传导系数对热性能的影响不是十分重要。翼片之间的距离应当足够地大,以便在空气的升力(温度差/密度)和摩擦力之间取得较好的折衷。将散热器表面黑化可以有效地改善热辐射性能。在安装面和环境空气之间的温度差为50 K时,黑化后的散热器热阻约降低15%。值得注意的是,上述表面处理并不影响模块底板和散热器之间的传热界面。
8.4 强制风冷
与自然空冷相比较,强制风冷时散热器的热阻可降低到1/5~1/15。
同自由对流相比,强制风冷时的α明显要大许多。当空气的入口温度为35℃时(参数表中的额定环境温度),强制风冷散热器的表面温度在额定运行时不应该大于80℃到90℃。
散热器材料的传导系数对冷却的效果影响极大。因此,建议选择较厚的根部和尽可能多的翼片数目。由于热量主要通过对流而散发,所以对于强制空冷来说,对散热器进行黑化处理几乎没有什么效果。
热阻Rt
上一篇:有源功率因数校正技术及发展趋势