位置:51电子网 » 技术资料 » 控制技术

基于像素聚类的指纹分割算法

发布时间:2007/8/29 0:00:00 访问次数:738

来源:电子技术应用  作者:楚亚蕴 詹小四 陈蕴 陈超 王峰


摘要:为准确提取有效指纹区域,提高自动指纹识别系统的准确率,降低后继处理算法的时间消耗,以像素点为考察对象,将条件概率事件模型引入到指纹图像分割方法中,在研究指纹图像所固有的纹理特征后,提出了指纹条件概率模型,根据有效指纹脊线与背景区域的差异,结合指纹脊线的相关特征,将指纹图像上的像素点分为有效指纹区域内的像素点和背景像素点两大类,为指纹图像的分割处理提供了一种有效的方法。
关键词:指纹指纹识别图像分割像素分类条件概率

近年来,自动指纹识别技术引起了广泛关注。作为指纹识别技术中的关键步骤之一,指纹分割的效果直接影响后期处理的效率和准确率,是当前自动指纹识别领域的一个研究重点。现有的指纹图像与背景区域的分割方法主要可以归结为以下两类:一类是基于块水平的分割方法,另一类是基于像素水平的分割方法。二者大都根据指纹图像灰度的统计特征(如方差、均值)设计算法的。这些方法对于一些干扰强烈的指纹图像,其分割效果并不理想。但是,由于方差等统计特性并不能很好地体现指纹的特性,不能充分利用指纹图像所携带的信息,因此以方差为指标进行指纹图像分割不能很好地适应各种情况。

对于指纹图像而言,指纹图像中的谷线连同背景区可以被看作指纹图像的背景。从像素分类的角度来看,可将脊线上的像素点看作有效的指纹区域点,而将其他像素点看作背景点。本文提出了像素分类的条件概率模型,充分利用指纹图像的信息,结合像素的性质,根据有效指纹脊线上像素点与背景像素点在该模型下条件概率分布的明显差异,实现对指纹图像的有效分割。


1 特征空间聚类方法
根据特征进行模式分类是指将一组目标根据测得的特征值划分到各类中。特征空间聚类方法将图像空间中的元素用对应的特征空间点表示,通过对特征空间的点聚集成团,然后映射回原图像空间以得到分割的结果。一般的阈值分割可以看作以像素的灰度为特征,用灰度直方图代表特征空间,用阈值将特征空间划分开,把得到的特征类映射回图像空间,不同灰度的像素构成不同的区域。除了像素灰度外,其他图像特征也可用于聚类。

在根据特征进行分类的方法中,将像素看作待分类的目标点,则分类就是分割。在指纹图像中,像素点一般分为两类:一类为有效指纹像素点,另一类为背景区域像素点。如果能够选择一种合适的特征,则可以通过特征聚类的方法对指纹图像进行有效的分割处理。

假设令x代表这种特征的值,x属于指纹背景和指纹前景的概率密度函数分别记为p(x|bk)和p(x|fk),再令两类的先验概率分别为p(bk)和p(fk),则有p(bk)+p(fk)=1。整幅指纹图的概率密度为:



如果给定一个阔值T,把x<T的像素划分为第一类,把x>T的像素划分为第二类,则使得误分概率最小的阈值为:



如果已知p(x|bk)、p(x|fk)、p(bk)和p(fk),则对给定的特征值x,将可以确定它所对应的像素更可能是背景像素点还是前景像素点。因为联合概率可以定义为:



所以可以通过比较以下两式来确定所需判定像素的类别:



但是,在实际的处理过程中,由于无法预先知道先验概率p(bk)和p(fk),因此期望寻求一种方法,以获得任一像素点分属两类图像区域的条件概率,以实现对指纹图像的有效分割,提取有效的指纹图像区域。为此,文中在仔细分析了指纹图像的内在特征后,给出了指纹图像的条件概率模型,并在此基础上实现了对像素点的分类,从而最终实现了对指纹图像的分割处理。


2 指纹图像的条件概率模型
作为一种特殊的纹理图像,可以认为指纹图像中的谷线和背景的灰度值大致相等。反映在灰度直方图上,存在两个脉冲状尖峰,一个是由于脊线的灰度值集中所形成的峰值,另一个则是由于谷线和背景的灰度值集中所形成的峰值,如图l所示。



在理论上,如果去除噪声影响,则灰度值总是在这两个区域相对集中,一个是脊线区,一个是谷线和背景区,反映在灰度直方图上就是两个峰值。根据这两个峰值对应的理论灰度值,可以确定指纹图像灰度分布的概率密度函数。在实际中,由于受到噪声等因素的影响,在灰度直方图上可能不会出现如图l所示两个的脉冲状的尖峰,但是仍然可以认为,脊线

来源:电子技术应用  作者:楚亚蕴 詹小四 陈蕴 陈超 王峰


摘要:为准确提取有效指纹区域,提高自动指纹识别系统的准确率,降低后继处理算法的时间消耗,以像素点为考察对象,将条件概率事件模型引入到指纹图像分割方法中,在研究指纹图像所固有的纹理特征后,提出了指纹条件概率模型,根据有效指纹脊线与背景区域的差异,结合指纹脊线的相关特征,将指纹图像上的像素点分为有效指纹区域内的像素点和背景像素点两大类,为指纹图像的分割处理提供了一种有效的方法。
关键词:指纹指纹识别图像分割像素分类条件概率

近年来,自动指纹识别技术引起了广泛关注。作为指纹识别技术中的关键步骤之一,指纹分割的效果直接影响后期处理的效率和准确率,是当前自动指纹识别领域的一个研究重点。现有的指纹图像与背景区域的分割方法主要可以归结为以下两类:一类是基于块水平的分割方法,另一类是基于像素水平的分割方法。二者大都根据指纹图像灰度的统计特征(如方差、均值)设计算法的。这些方法对于一些干扰强烈的指纹图像,其分割效果并不理想。但是,由于方差等统计特性并不能很好地体现指纹的特性,不能充分利用指纹图像所携带的信息,因此以方差为指标进行指纹图像分割不能很好地适应各种情况。

对于指纹图像而言,指纹图像中的谷线连同背景区可以被看作指纹图像的背景。从像素分类的角度来看,可将脊线上的像素点看作有效的指纹区域点,而将其他像素点看作背景点。本文提出了像素分类的条件概率模型,充分利用指纹图像的信息,结合像素的性质,根据有效指纹脊线上像素点与背景像素点在该模型下条件概率分布的明显差异,实现对指纹图像的有效分割。


1 特征空间聚类方法
根据特征进行模式分类是指将一组目标根据测得的特征值划分到各类中。特征空间聚类方法将图像空间中的元素用对应的特征空间点表示,通过对特征空间的点聚集成团,然后映射回原图像空间以得到分割的结果。一般的阈值分割可以看作以像素的灰度为特征,用灰度直方图代表特征空间,用阈值将特征空间划分开,把得到的特征类映射回图像空间,不同灰度的像素构成不同的区域。除了像素灰度外,其他图像特征也可用于聚类。

在根据特征进行分类的方法中,将像素看作待分类的目标点,则分类就是分割。在指纹图像中,像素点一般分为两类:一类为有效指纹像素点,另一类为背景区域像素点。如果能够选择一种合适的特征,则可以通过特征聚类的方法对指纹图像进行有效的分割处理。

假设令x代表这种特征的值,x属于指纹背景和指纹前景的概率密度函数分别记为p(x|bk)和p(x|fk),再令两类的先验概率分别为p(bk)和p(fk),则有p(bk)+p(fk)=1。整幅指纹图的概率密度为:



如果给定一个阔值T,把x<T的像素划分为第一类,把x>T的像素划分为第二类,则使得误分概率最小的阈值为:



如果已知p(x|bk)、p(x|fk)、p(bk)和p(fk),则对给定的特征值x,将可以确定它所对应的像素更可能是背景像素点还是前景像素点。因为联合概率可以定义为:



所以可以通过比较以下两式来确定所需判定像素的类别:



但是,在实际的处理过程中,由于无法预先知道先验概率p(bk)和p(fk),因此期望寻求一种方法,以获得任一像素点分属两类图像区域的条件概率,以实现对指纹图像的有效分割,提取有效的指纹图像区域。为此,文中在仔细分析了指纹图像的内在特征后,给出了指纹图像的条件概率模型,并在此基础上实现了对像素点的分类,从而最终实现了对指纹图像的分割处理。


2 指纹图像的条件概率模型
作为一种特殊的纹理图像,可以认为指纹图像中的谷线和背景的灰度值大致相等。反映在灰度直方图上,存在两个脉冲状尖峰,一个是由于脊线的灰度值集中所形成的峰值,另一个则是由于谷线和背景的灰度值集中所形成的峰值,如图l所示。



在理论上,如果去除噪声影响,则灰度值总是在这两个区域相对集中,一个是脊线区,一个是谷线和背景区,反映在灰度直方图上就是两个峰值。根据这两个峰值对应的理论灰度值,可以确定指纹图像灰度分布的概率密度函数。在实际中,由于受到噪声等因素的影响,在灰度直方图上可能不会出现如图l所示两个的脉冲状的尖峰,但是仍然可以认为,脊线

相关IC型号

热门点击

 

推荐技术资料

自制经典的1875功放
    平时我也经常逛一些音响DIY论坛,发现有很多人喜欢LM... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!