建筑设计中的声学与声音系统
发布时间:2007/8/15 0:00:00 访问次数:601
来源:INFOAV CHINA
在礼堂、艺术演出中心、剧院、音乐厅、体育场馆、教室以及教堂等建筑设计中,都要求进行声学设计以便能获得清晰、愉悦、无失真的语音和音乐效果。这是建筑设计中的一项基本要求。
因为良好的声音效果对于许多建筑物都是重要的,因此建筑设计师在设计初期就应该充分考虑建筑物的声学效果。在实际操作中,这意味着声学专家和声音系统设计师应在一开始就被邀请加入设计队伍,最好是在构思阶段就加入,以便确保声学和扩声在基础规划阶段就能得到加强。所以,一个好的建筑音效设计离不开对声学和声音的理解以及一个好的设计团队。
声学概念
声光之间的不同点
由于人类感官在许多方面都是模拟式的,因此有一种错误的认识认为声音与光是详细的,造成这种错误认识的例子是你只需要像照明一样用声音“覆盖”一个区域即可。然而,这种模拟性认识却在一些基础的物理学面前显得漏洞百出。
我们感知到的声音的空气传播波长要比光线的电磁波传播波长要长得多。当多束光线照在室内的同一个目标时,光线亮度的增加不会产生给人以可察觉的视觉失真。相比之下,多个声波投射在室内的同一个目标却相互干扰,甚至会相互抵消,除非该房间经过了专门的声学设计以避免这种结果的产生。这种干扰可能会使声谱中的某些重要元素丧失,从而在室内的不同地点产生不同的声音质量,并延迟声音的到达时间。所有这些因素加起来可能会使音乐沉闷,质量降低,使说话声无法听清。
造成这种干扰的常见原因主要包括反射和扩音音箱交感作用。
图1
声音反射
坚固且平直的墙面,如戏院包厢的正面墙等,可能会产生反射。如果包厢位于剧院或礼堂的后部,反馈回观众席的声音会使坐在舞台和包厢之间的观众难以听清台上的说话声,因为这部分观众会既听到原始声音,也听到回声,后者抵达耳部的时间会稍晚些。从而造成观众听不清或听到的声音杂乱无章。
房间与墙壁的形状
凹面,圆形,包括凹墙和穹顶形,这些形状对于语音质量要求高的房间是最不适宜的。凹面会将声音聚焦于一个特定区域,使该区域较房间的其他区域的声音更强,产生强烈的延时反射,无法与原始声同步。这会产生听不清的问题。解决的办法是将凹面改成多个表面球形凸起形,这样可散播回声波成多个向不同方向传播的较小的声波,从而降低听众的不舒服程度。
图2
声学处理
吸声材料一般都是频率可选的,即某些材料只吸收高频声,而另外一些材料却既能吸收高频声,也能吸收人耳可辨别的中频声。确保所选择的用于覆盖墙壁、门窗的吸音材料能吸收需要被吸收的声频,并恰好在需要吸收的区域,是重要的。其他处理手段,如使用扩散体扩散声波,在某些时候可能更加有效。合格的声学专家能针对特定问题给出最行之有效的声音处理方式。
“30微秒与30英尺”原理
反馈在什么时候会使听众厌烦?一般情况下,反馈声的传播距离比原始声传播距离超出30英尺或30英尺以上时,回声即会对人的听觉产生负面影响。这是由于只要声音在30ms以内抵达人类的大脑,后者便能将这些声音作为一个声音来予以辨别,而在原始声音之后超过30ms抵达的声音就会被识别为一个回声,回声便会对音乐或说话声造成干扰,影响人耳的辨别。
声音每毫秒的传播距离大约为一英尺。30ms的时间声音可传播30英尺的距离。当回声的传播距离——即从听众至反射面再折回到听众的距离,超过30英尺时,回声就会影响到人耳的可理解性。例如,从来自听众后面10英尺的墙壁产生的声反射一般不会对人耳理解声音产生影响,因为原始声通过人耳的时间为10ms,从墙壁回来的发射声抵达人耳的时间也为10ms,加起来只有20ms,小于30ms的允许时间间隔。然而,同样的情况,如果反射墙在听众后面20英尺的话就会产生问题,因为原始声到达听众耳朵和反射声到达听众耳朵的时间均为20ms,加起来总共有40ms,超过了30ms的允许时间间隔。
解决的方法可以是在反射面上采用吸音材料以减少回声的量,改变反射面的形状来打乱反射声波的一致性,还可以重新对声音系统进行设计,使之不至于产生回声。
相比之下,在30ms以内抵达人耳的早期回声。特别是来自侧面墙的回声,被称为早期边音反射,它能够增强声音的宽广域,使房间给人以温暖的环境感觉。一些演出大厅专门设计了靠得较近的左右墙壁,以通过增加早期边音反射密度的方式来改进声音效果。
图3
来自后面墙的声反射可能会造成问题,降低语音的可理解性及音乐的清晰度。
噪声控制
来自空调和相邻
来源:INFOAV CHINA
在礼堂、艺术演出中心、剧院、音乐厅、体育场馆、教室以及教堂等建筑设计中,都要求进行声学设计以便能获得清晰、愉悦、无失真的语音和音乐效果。这是建筑设计中的一项基本要求。
因为良好的声音效果对于许多建筑物都是重要的,因此建筑设计师在设计初期就应该充分考虑建筑物的声学效果。在实际操作中,这意味着声学专家和声音系统设计师应在一开始就被邀请加入设计队伍,最好是在构思阶段就加入,以便确保声学和扩声在基础规划阶段就能得到加强。所以,一个好的建筑音效设计离不开对声学和声音的理解以及一个好的设计团队。
声学概念
声光之间的不同点
由于人类感官在许多方面都是模拟式的,因此有一种错误的认识认为声音与光是详细的,造成这种错误认识的例子是你只需要像照明一样用声音“覆盖”一个区域即可。然而,这种模拟性认识却在一些基础的物理学面前显得漏洞百出。
我们感知到的声音的空气传播波长要比光线的电磁波传播波长要长得多。当多束光线照在室内的同一个目标时,光线亮度的增加不会产生给人以可察觉的视觉失真。相比之下,多个声波投射在室内的同一个目标却相互干扰,甚至会相互抵消,除非该房间经过了专门的声学设计以避免这种结果的产生。这种干扰可能会使声谱中的某些重要元素丧失,从而在室内的不同地点产生不同的声音质量,并延迟声音的到达时间。所有这些因素加起来可能会使音乐沉闷,质量降低,使说话声无法听清。
造成这种干扰的常见原因主要包括反射和扩音音箱交感作用。
图1
声音反射
坚固且平直的墙面,如戏院包厢的正面墙等,可能会产生反射。如果包厢位于剧院或礼堂的后部,反馈回观众席的声音会使坐在舞台和包厢之间的观众难以听清台上的说话声,因为这部分观众会既听到原始声音,也听到回声,后者抵达耳部的时间会稍晚些。从而造成观众听不清或听到的声音杂乱无章。
房间与墙壁的形状
凹面,圆形,包括凹墙和穹顶形,这些形状对于语音质量要求高的房间是最不适宜的。凹面会将声音聚焦于一个特定区域,使该区域较房间的其他区域的声音更强,产生强烈的延时反射,无法与原始声同步。这会产生听不清的问题。解决的办法是将凹面改成多个表面球形凸起形,这样可散播回声波成多个向不同方向传播的较小的声波,从而降低听众的不舒服程度。
图2
声学处理
吸声材料一般都是频率可选的,即某些材料只吸收高频声,而另外一些材料却既能吸收高频声,也能吸收人耳可辨别的中频声。确保所选择的用于覆盖墙壁、门窗的吸音材料能吸收需要被吸收的声频,并恰好在需要吸收的区域,是重要的。其他处理手段,如使用扩散体扩散声波,在某些时候可能更加有效。合格的声学专家能针对特定问题给出最行之有效的声音处理方式。
“30微秒与30英尺”原理
反馈在什么时候会使听众厌烦?一般情况下,反馈声的传播距离比原始声传播距离超出30英尺或30英尺以上时,回声即会对人的听觉产生负面影响。这是由于只要声音在30ms以内抵达人类的大脑,后者便能将这些声音作为一个声音来予以辨别,而在原始声音之后超过30ms抵达的声音就会被识别为一个回声,回声便会对音乐或说话声造成干扰,影响人耳的辨别。
声音每毫秒的传播距离大约为一英尺。30ms的时间声音可传播30英尺的距离。当回声的传播距离——即从听众至反射面再折回到听众的距离,超过30英尺时,回声就会影响到人耳的可理解性。例如,从来自听众后面10英尺的墙壁产生的声反射一般不会对人耳理解声音产生影响,因为原始声通过人耳的时间为10ms,从墙壁回来的发射声抵达人耳的时间也为10ms,加起来只有20ms,小于30ms的允许时间间隔。然而,同样的情况,如果反射墙在听众后面20英尺的话就会产生问题,因为原始声到达听众耳朵和反射声到达听众耳朵的时间均为20ms,加起来总共有40ms,超过了30ms的允许时间间隔。
解决的方法可以是在反射面上采用吸音材料以减少回声的量,改变反射面的形状来打乱反射声波的一致性,还可以重新对声音系统进行设计,使之不至于产生回声。
相比之下,在30ms以内抵达人耳的早期回声。特别是来自侧面墙的回声,被称为早期边音反射,它能够增强声音的宽广域,使房间给人以温暖的环境感觉。一些演出大厅专门设计了靠得较近的左右墙壁,以通过增加早期边音反射密度的方式来改进声音效果。
图3
来自后面墙的声反射可能会造成问题,降低语音的可理解性及音乐的清晰度。
噪声控制
来自空调和相邻
上一篇:扬声器系统的布置方式
上一篇:演艺吧DJ调音快速实战之人声调试