DC/DC变换器的PWM控制技术
发布时间:2007/8/15 0:00:00 访问次数:497
DC/DC变换器广泛应用于便携装置(如笔记本计算机、蜂窝电话、寻呼机、PDA等)中。它有两种类型,即线性变换器和开关变换器。开关变换器因具有效率高、灵活的正负极性和升降压方式的特点,而备受人们的青睐。
开关稳压器利用无源磁性元件和电容电路元件的能量存储特性,从输入电压源获取分离的能量,暂时地把能量以磁场形式存储在电感器中,或以电场形式存储在电容器中,然后将能量转换到负载,实现DC/DC变换。开关稳压器的框图示于图1。
实现能量从源到负载的变换需要复杂的控制技术。现在,大多数采用PWM(脉冲宽度调制)技术。从输入电源提取的能量随脉宽变化,在一固定周期内保持平均能量转换。PWM的占空因数(δ)是“on”时间(ton,从电源提取能量的时间)与总开关周期(T)之比。对于开关稳压器,其稳定的输出电压正比于PWM占空因数,而且控制环路利用“大信号”占空因数做为对电源开关的控制信号。
开关频率和储能元件
DC/DC变换器中,功率开关和储能元件的物理尺寸直接受工作频率影响。磁性元件所耦合的功率是:P(L)=1/2(LI2f)。随着频率的提高,为保持恒定的功率所要求的电感相应地减小。由于电感与磁性材料的面积和线匝数有关,所以可以减小电感器的物理尺寸。
电容元件所耦合的功率是:P(c)=1/2(CV2f),所以储能电容器可实现类似的尺寸减小。元件尺寸的减小对于电源设计人员和系统设计人员来说都是非常重要的,可使得开关电源占用较小的体积和印刷电路板面积。
开关变换器拓扑结构
开关变换器的拓扑结构系指能用于转换、控制和调节输入电压的功率开关元件和储能元件的不同配置。很多不同的开关稳压器拓扑结构可分为两种基本类型:非隔离型(在工作期间输入源和输出负载共用一个共同的电流通路)和隔离型(能量转换是用一个相互耦合磁性元件(变压器)来实现的,而且从源到负载的耦合是借助于磁通而不是共同的电器)。变换器拓扑结构是根据系统造价、性能指标和输入线/输出负载特性诸因素选定的。
非隔离开关变换器
有四种基本非隔离开关稳压器拓扑结构用于DC/DC变换器。
1. 降压变换器
降压变换器将一输入电压变换成一较低的稳定输出电压。输出电压(Vout)和输入电压(Vin)的关系为:
Vout/Vin=δ(占空因数)Vin>Vout
2. 升压变换器
升压变换器将一输入电压变换成一较高的稳定输出电压。输出电压和输入电压的关系为:
Vout/Vin=1/(1-δ)Vin
3. 逆向变换器
逆向变换器将一输入电压变换成一较低反相输出电压。输出电压与输入电压的关系为:
Vout/Vin=-δ/(1-δ)Vin>|Vout|
4.Cuk变换器
Cuk(“丘克”)变换器将一输入电压变换成一稳定反相较低值或较高值输出电压(电压值取决于占空因数)。输出电压输入电压的关系为:
Vout/Vin=-δ/(1-δ)|Vin|>|Vout|,δ<0.5|Vin|0.5
隔离开关变换器
有很多隔离开关变换器拓扑结构,但其中三种比较通用,它们是:逆向变换器、正向变换器、推挽变换器。在这些电路中,从输入电源到负载的能量转换是通过一个变压器或其他磁通耦合磁性元件实现的。
1. 逆向隔离变换器
逆向隔离变换器将一输入电压变换成一稳定的取决于变压器匝数比的较低值或较高值输出电压。输出电压与输入电压的关系式为:
Vout/Vin=(1/N)(δ/(1-δ))Vin>Vout或Vin 式中N为变压器匝数比。
2. 正向隔离变换器
正向隔离变换器将一输入电压变换成一稳定的取决于变压器匝数比的较低值或较高值输出电压。输出电压和输入电压关系为:
Vout/Vin=(1/N)δVin>Vout或Vin
3. 推挽隔离变换器
推挽隔离变换器将一输入电压变换成一稳定较低值输出电压。它们的关系为:
Vout/Vin=(2/N)δVin>Vout
PWM控制技术
控
DC/DC变换器广泛应用于便携装置(如笔记本计算机、蜂窝电话、寻呼机、PDA等)中。它有两种类型,即线性变换器和开关变换器。开关变换器因具有效率高、灵活的正负极性和升降压方式的特点,而备受人们的青睐。
开关稳压器利用无源磁性元件和电容电路元件的能量存储特性,从输入电压源获取分离的能量,暂时地把能量以磁场形式存储在电感器中,或以电场形式存储在电容器中,然后将能量转换到负载,实现DC/DC变换。开关稳压器的框图示于图1。
实现能量从源到负载的变换需要复杂的控制技术。现在,大多数采用PWM(脉冲宽度调制)技术。从输入电源提取的能量随脉宽变化,在一固定周期内保持平均能量转换。PWM的占空因数(δ)是“on”时间(ton,从电源提取能量的时间)与总开关周期(T)之比。对于开关稳压器,其稳定的输出电压正比于PWM占空因数,而且控制环路利用“大信号”占空因数做为对电源开关的控制信号。
开关频率和储能元件
DC/DC变换器中,功率开关和储能元件的物理尺寸直接受工作频率影响。磁性元件所耦合的功率是:P(L)=1/2(LI2f)。随着频率的提高,为保持恒定的功率所要求的电感相应地减小。由于电感与磁性材料的面积和线匝数有关,所以可以减小电感器的物理尺寸。
电容元件所耦合的功率是:P(c)=1/2(CV2f),所以储能电容器可实现类似的尺寸减小。元件尺寸的减小对于电源设计人员和系统设计人员来说都是非常重要的,可使得开关电源占用较小的体积和印刷电路板面积。
开关变换器拓扑结构
开关变换器的拓扑结构系指能用于转换、控制和调节输入电压的功率开关元件和储能元件的不同配置。很多不同的开关稳压器拓扑结构可分为两种基本类型:非隔离型(在工作期间输入源和输出负载共用一个共同的电流通路)和隔离型(能量转换是用一个相互耦合磁性元件(变压器)来实现的,而且从源到负载的耦合是借助于磁通而不是共同的电器)。变换器拓扑结构是根据系统造价、性能指标和输入线/输出负载特性诸因素选定的。
非隔离开关变换器
有四种基本非隔离开关稳压器拓扑结构用于DC/DC变换器。
1. 降压变换器
降压变换器将一输入电压变换成一较低的稳定输出电压。输出电压(Vout)和输入电压(Vin)的关系为:
Vout/Vin=δ(占空因数)Vin>Vout
2. 升压变换器
升压变换器将一输入电压变换成一较高的稳定输出电压。输出电压和输入电压的关系为:
Vout/Vin=1/(1-δ)Vin
3. 逆向变换器
逆向变换器将一输入电压变换成一较低反相输出电压。输出电压与输入电压的关系为:
Vout/Vin=-δ/(1-δ)Vin>|Vout|
4.Cuk变换器
Cuk(“丘克”)变换器将一输入电压变换成一稳定反相较低值或较高值输出电压(电压值取决于占空因数)。输出电压输入电压的关系为:
Vout/Vin=-δ/(1-δ)|Vin|>|Vout|,δ<0.5|Vin|0.5
隔离开关变换器
有很多隔离开关变换器拓扑结构,但其中三种比较通用,它们是:逆向变换器、正向变换器、推挽变换器。在这些电路中,从输入电源到负载的能量转换是通过一个变压器或其他磁通耦合磁性元件实现的。
1. 逆向隔离变换器
逆向隔离变换器将一输入电压变换成一稳定的取决于变压器匝数比的较低值或较高值输出电压。输出电压与输入电压的关系式为:
Vout/Vin=(1/N)(δ/(1-δ))Vin>Vout或Vin 式中N为变压器匝数比。
2. 正向隔离变换器
正向隔离变换器将一输入电压变换成一稳定的取决于变压器匝数比的较低值或较高值输出电压。输出电压和输入电压关系为:
Vout/Vin=(1/N)δVin>Vout或Vin
3. 推挽隔离变换器
推挽隔离变换器将一输入电压变换成一稳定较低值输出电压。它们的关系为:
Vout/Vin=(2/N)δVin>Vout
PWM控制技术
控
上一篇:音响系统中功放的作用功不可没