大型复杂设备分布式状态监测系统的研究与实现
发布时间:2008/6/3 0:00:00 访问次数:540
     王汉功 来源:《电子技术应用》
     摘要:研究了基于bitbus现场总线通信子网和windows
     nt局域网而构建的大型复杂机电设备分布式状态监测系统,介绍了该系统的体系结构以及系统所包含的各硬件、软件子系统的构造与设计。
    
    
     关键词:分布式状态监测系统
     专家系统 故障诊断 现场总线
     大型复杂机电设备通常包括电气、机械、液压、气动、控制等多个设备单元。在对此类设备进行状态监测与故障诊断时,由于系统的设备繁多、复杂,以往所采用的用逐点、串行采集信号进行监测与诊断的方法不仅费时,而且监测与诊断的效率较低[1~3]。分布式状态监测系统可以实现同步、并行地对系统的各个重要部分进行信号采集和处理,不仅大大提高了效率,而且所采集的信号具有同步关联性;借助信息融合的方法,还可以提高诊断的精确性,为保证设备的安全性与可靠性提供了一条非常有效的途径。
     1 系统体系结构
     分布式监测系统的体系结构如图1所示。从图中可以看出,整个系统主要包括以下五部分。
     1.1 现场监测单元
     该部分主要包括传感器子系统、监测仪表子系统和数据采集子系统,主要完成对各种信号的变换、采集、预处理和显示等功能。各个现场监测单元本身具有一些初步的信号分析能力,也可以扩充多个传感器单元,以便同时对设备的一个子系统进行基于多个传感器的多点、多种信号采集和分析。
     1.2 现场通讯子系统
     现场通讯子系统完成各个现场监测单元之间的通讯功能,并负责将有关信息传递到监测分析子系统。该单元采用bitbus现场总线标准,拓扑结构为总线型,并采用集中式通信控制,其网络节点容量大于32个,数据传输速度在通信距离为1000~2000m时可达375kbps,采用双绞线半双工传输方式。网络通讯采用bitbus总线定义的物理层、数据链路层、消息层和应用层等四层通信结构。由监测分析子系统控制各数据采集器,寻址后发送控制命令,数据采集器则执行命令,发送数据,实现控制命令和数据传送。
     1.3 监测分析子系统
     计算机监测分析子系统是整个系统的重要组成部分,它一方面与各个现场监测单元进行通讯,并将各现场监测单元的信息进行处理和存储,为诊断专家子系统提供诊断信息和依据;另一方面通过该子系统控制整个系统的工作过程,实现对设备各子系统的信号采集、状态监测、故障检测及为专家系统提供诊断信息数据库等功能。
     1.4 故障诊断分析处理专家系统
     故障诊断分析处理专家系统包含多个子诊断专家系统,利用监测分析子系统所产生的各种信息和分析处理结果,把诊断任务分给相应的故障诊断专家子系统。各子系统利用知识库中已有的知识和推理方法,分别完成各自的推理诊断任务。然后,总系统根据各子系统所得出的结论和信息,进行信息融合和知识推理,找出设备可能存在的故障原因及故障部位,并给出故障处理意见,为现场维修提供重要决策意见。故障诊断专家系统与监测子系统进行组合,既可以实现实时在线监测和实时故障诊断,又可以通过人机对话的形式交互地完成诊断咨询任务。
     1.5 windows nt局域网
     windows nt局域网将计算机监测子系统与故障诊断专家系统以及各诊断子系统联接起来。监测子系统所产生的信息以及各专家系统产生的结果均通过网络服务器进行通讯,实现各种信息和数据的交换。利用局域网,可以实现监测与诊断过程中的各种信息和资源的共享。如果将该局域网与其它远程网络相连,还可以实现对设备的远程状态监测与故障诊断[4]。
     采用以上方法建立的系统体系,可以有效地完成对设备进行信号采集、处理、信息交流、分布式监测和故障诊断等功能。
     2 系统软件组成及设计
     系统软件主要包括信息通讯软件、监测分析
     王汉功 来源:《电子技术应用》
     摘要:研究了基于bitbus现场总线通信子网和windows
     nt局域网而构建的大型复杂机电设备分布式状态监测系统,介绍了该系统的体系结构以及系统所包含的各硬件、软件子系统的构造与设计。
    
    
     关键词:分布式状态监测系统
     专家系统 故障诊断 现场总线
     大型复杂机电设备通常包括电气、机械、液压、气动、控制等多个设备单元。在对此类设备进行状态监测与故障诊断时,由于系统的设备繁多、复杂,以往所采用的用逐点、串行采集信号进行监测与诊断的方法不仅费时,而且监测与诊断的效率较低[1~3]。分布式状态监测系统可以实现同步、并行地对系统的各个重要部分进行信号采集和处理,不仅大大提高了效率,而且所采集的信号具有同步关联性;借助信息融合的方法,还可以提高诊断的精确性,为保证设备的安全性与可靠性提供了一条非常有效的途径。
     1 系统体系结构
     分布式监测系统的体系结构如图1所示。从图中可以看出,整个系统主要包括以下五部分。
     1.1 现场监测单元
     该部分主要包括传感器子系统、监测仪表子系统和数据采集子系统,主要完成对各种信号的变换、采集、预处理和显示等功能。各个现场监测单元本身具有一些初步的信号分析能力,也可以扩充多个传感器单元,以便同时对设备的一个子系统进行基于多个传感器的多点、多种信号采集和分析。
     1.2 现场通讯子系统
     现场通讯子系统完成各个现场监测单元之间的通讯功能,并负责将有关信息传递到监测分析子系统。该单元采用bitbus现场总线标准,拓扑结构为总线型,并采用集中式通信控制,其网络节点容量大于32个,数据传输速度在通信距离为1000~2000m时可达375kbps,采用双绞线半双工传输方式。网络通讯采用bitbus总线定义的物理层、数据链路层、消息层和应用层等四层通信结构。由监测分析子系统控制各数据采集器,寻址后发送控制命令,数据采集器则执行命令,发送数据,实现控制命令和数据传送。
     1.3 监测分析子系统
     计算机监测分析子系统是整个系统的重要组成部分,它一方面与各个现场监测单元进行通讯,并将各现场监测单元的信息进行处理和存储,为诊断专家子系统提供诊断信息和依据;另一方面通过该子系统控制整个系统的工作过程,实现对设备各子系统的信号采集、状态监测、故障检测及为专家系统提供诊断信息数据库等功能。
     1.4 故障诊断分析处理专家系统
     故障诊断分析处理专家系统包含多个子诊断专家系统,利用监测分析子系统所产生的各种信息和分析处理结果,把诊断任务分给相应的故障诊断专家子系统。各子系统利用知识库中已有的知识和推理方法,分别完成各自的推理诊断任务。然后,总系统根据各子系统所得出的结论和信息,进行信息融合和知识推理,找出设备可能存在的故障原因及故障部位,并给出故障处理意见,为现场维修提供重要决策意见。故障诊断专家系统与监测子系统进行组合,既可以实现实时在线监测和实时故障诊断,又可以通过人机对话的形式交互地完成诊断咨询任务。
     1.5 windows nt局域网
     windows nt局域网将计算机监测子系统与故障诊断专家系统以及各诊断子系统联接起来。监测子系统所产生的信息以及各专家系统产生的结果均通过网络服务器进行通讯,实现各种信息和数据的交换。利用局域网,可以实现监测与诊断过程中的各种信息和资源的共享。如果将该局域网与其它远程网络相连,还可以实现对设备的远程状态监测与故障诊断[4]。
     采用以上方法建立的系统体系,可以有效地完成对设备进行信号采集、处理、信息交流、分布式监测和故障诊断等功能。
     2 系统软件组成及设计
     系统软件主要包括信息通讯软件、监测分析
上一篇:多人工干涉算法的编程实现