位置:51电子网 » 技术资料 » 其它综合

基于脉动阵列的FIR滤波器设计

发布时间:2008/5/29 0:00:00 访问次数:415

1 引言

  有限长冲激响应(fir)滤波器在数字信号处理中是一种基本的处理单元。无限长单位冲激响应(iir)数字滤波器的优点是可以利用模拟滤波器设计的结果,但其缺点是不具有线性相位性。图像处理以及数据传输都要求信道具有线性相位特性,fir滤波器可以做成严格的线性相位,避免被处理信号产生相位失真,还可以具有任意的幅度特性。此外,fir滤波器的单位冲激响应是有限长的,因而滤波器一定是稳定的。

  在数字滤波器的研究中,已经提出多种fir滤波器的设计和实现方法,如并行结构、流水线结构、分布式结构等[1-3]。fir滤波器计算量大,且要求实时实现。如何提高速度以满足信号处理的高效性和实时性一直是人们研究的重点和热点。脉动阵列是一种新型的流水线结构,所有处理单元是相同且全流水的,并且有模块化和规则化的特征,这对于硬件设计是很重要的。脉动阵列结构可以很好地满足高速实时信号处理的需要,提高数据的通过率及电路的执行速度。该结构结合了并行结构和流水线的优势,使fir滤波器达到了更高的处理速度。

  数字滤波器现在大多在dsp芯片上实现[4]。随着集成电路技术的发展,现在已有多种专用dsp芯片用于实现滤波、fft等运算。另外,fpga内部的规整的逻辑块阵列,很适合实现脉动阵列这种高度并行的运算。altera公司新推出的stratix系列fpga内部有丰富的逻辑阵列资源及高性能嵌入式dsp块,能够高效地实现数字信号处理功能[5]。

  本文首先介绍了fir滤波器和脉动阵列的原理,然后设计了脉动阵列结构的fir滤波器,画出电路的结构框图,并进行了时序分析,最后在fpga上进行验证。结果表明,脉动阵列的模块化和高度流水线的结构使fir滤波器在fpga上获得了很好的性能,比串行结构的运算速度更快,呵以更好地满足数字信号处理中高效、实时的要求。

2 fir滤波器及脉动阵列原理

2.1 fir滤波器原理

  数字滤波器用于改变输入信号x(n)的频谱特性以满足某种特定的设计要求。一个因果的数字滤波器可以用它的单位冲激响应h(n)、传输函数h(z)或者差分方程来表达。其中单位冲激响应和传输函数描述了系统的时域和频域性质,差分方程则反映了实现该滤波器所需的运算。

  如果1≤k≤n时,ak=0,则:

  这就是一个m阶的fir滤波器,是非递归运算。

2.2 脉动阵列

  脉动阵列结构是1978年由carneige-mellon大学的h.t.kung等人发展起来的一种专用处理器设计模型,是一种新的流水线结构,表示一种有节奏地汁算并通过系统传输数据的处理单元网络。这些处理单元规则地泵入泵出数据以维持规则的数据流[6]。由于其数据运算与传送方式类似于心脏或脉搏有节奏地跳动,因此被称为心动阵列或脉动阵列。利用脉动阵列可设计出一系列适合数字信号处理应用的模块化、规则且有效的运算结构。脉动阵列结构的基本特性如下:

(1)脉动性

  数据在一个全局时钟的精确控制下,有节奏地经过计算和传递过程,最后通过网络。

(2)模块性和规则性

  阵列由模块化的处理单元组成,各处理单元之间的互连方式均匀一致,并且计算网络可任意扩大。

(3)空间局部性和时间局部性

  表现在数据从一个计算节点传递到下一个计算节点至少需要一个单元时间。

(4)有效的流水线结构

  脉动阵列免除了形成数据流所需的控制开销。阵列内处理单元间的局部连接方式使阵列中负载均匀、连线极短,最大限度地减小了系统内部的通信延时,提高了处理单元的利用率,使整个阵列的系统性能得到充分发挥。

  脉动结构是将线性映射技术用于规则依赖图上进行设计的。依赖图的边表示优先约束。脉动阵列设计中的基本矢量有:

  (1)投影矢量:

  (2)处理器矢量:pt=(p1 p2)

  (3)调度矢量:st=(s1 s2)

  (4)硬件利用率:hue=1/│std │

3 flr滤波器的脉动结构设计

3.1 fir滤波器的脉动阵列结构

  用调度不等式选择可行的调度矢量st,并根据脉动结构的可行性限制条件选择投影矢量d和处理器空间矢量pt,然后用线性映射技术设计脉动列。

  选择投影矢量、处理器矢量和调度矢量如下:

于是,节点it=(i,j)被处理为:

节点it=(i,j)的执行时间为:

硬件利用率:

以五

1 引言

  有限长冲激响应(fir)滤波器在数字信号处理中是一种基本的处理单元。无限长单位冲激响应(iir)数字滤波器的优点是可以利用模拟滤波器设计的结果,但其缺点是不具有线性相位性。图像处理以及数据传输都要求信道具有线性相位特性,fir滤波器可以做成严格的线性相位,避免被处理信号产生相位失真,还可以具有任意的幅度特性。此外,fir滤波器的单位冲激响应是有限长的,因而滤波器一定是稳定的。

  在数字滤波器的研究中,已经提出多种fir滤波器的设计和实现方法,如并行结构、流水线结构、分布式结构等[1-3]。fir滤波器计算量大,且要求实时实现。如何提高速度以满足信号处理的高效性和实时性一直是人们研究的重点和热点。脉动阵列是一种新型的流水线结构,所有处理单元是相同且全流水的,并且有模块化和规则化的特征,这对于硬件设计是很重要的。脉动阵列结构可以很好地满足高速实时信号处理的需要,提高数据的通过率及电路的执行速度。该结构结合了并行结构和流水线的优势,使fir滤波器达到了更高的处理速度。

  数字滤波器现在大多在dsp芯片上实现[4]。随着集成电路技术的发展,现在已有多种专用dsp芯片用于实现滤波、fft等运算。另外,fpga内部的规整的逻辑块阵列,很适合实现脉动阵列这种高度并行的运算。altera公司新推出的stratix系列fpga内部有丰富的逻辑阵列资源及高性能嵌入式dsp块,能够高效地实现数字信号处理功能[5]。

  本文首先介绍了fir滤波器和脉动阵列的原理,然后设计了脉动阵列结构的fir滤波器,画出电路的结构框图,并进行了时序分析,最后在fpga上进行验证。结果表明,脉动阵列的模块化和高度流水线的结构使fir滤波器在fpga上获得了很好的性能,比串行结构的运算速度更快,呵以更好地满足数字信号处理中高效、实时的要求。

2 fir滤波器及脉动阵列原理

2.1 fir滤波器原理

  数字滤波器用于改变输入信号x(n)的频谱特性以满足某种特定的设计要求。一个因果的数字滤波器可以用它的单位冲激响应h(n)、传输函数h(z)或者差分方程来表达。其中单位冲激响应和传输函数描述了系统的时域和频域性质,差分方程则反映了实现该滤波器所需的运算。

  如果1≤k≤n时,ak=0,则:

  这就是一个m阶的fir滤波器,是非递归运算。

2.2 脉动阵列

  脉动阵列结构是1978年由carneige-mellon大学的h.t.kung等人发展起来的一种专用处理器设计模型,是一种新的流水线结构,表示一种有节奏地汁算并通过系统传输数据的处理单元网络。这些处理单元规则地泵入泵出数据以维持规则的数据流[6]。由于其数据运算与传送方式类似于心脏或脉搏有节奏地跳动,因此被称为心动阵列或脉动阵列。利用脉动阵列可设计出一系列适合数字信号处理应用的模块化、规则且有效的运算结构。脉动阵列结构的基本特性如下:

(1)脉动性

  数据在一个全局时钟的精确控制下,有节奏地经过计算和传递过程,最后通过网络。

(2)模块性和规则性

  阵列由模块化的处理单元组成,各处理单元之间的互连方式均匀一致,并且计算网络可任意扩大。

(3)空间局部性和时间局部性

  表现在数据从一个计算节点传递到下一个计算节点至少需要一个单元时间。

(4)有效的流水线结构

  脉动阵列免除了形成数据流所需的控制开销。阵列内处理单元间的局部连接方式使阵列中负载均匀、连线极短,最大限度地减小了系统内部的通信延时,提高了处理单元的利用率,使整个阵列的系统性能得到充分发挥。

  脉动结构是将线性映射技术用于规则依赖图上进行设计的。依赖图的边表示优先约束。脉动阵列设计中的基本矢量有:

  (1)投影矢量:

  (2)处理器矢量:pt=(p1 p2)

  (3)调度矢量:st=(s1 s2)

  (4)硬件利用率:hue=1/│std │

3 flr滤波器的脉动结构设计

3.1 fir滤波器的脉动阵列结构

  用调度不等式选择可行的调度矢量st,并根据脉动结构的可行性限制条件选择投影矢量d和处理器空间矢量pt,然后用线性映射技术设计脉动列。

  选择投影矢量、处理器矢量和调度矢量如下:

于是,节点it=(i,j)被处理为:

节点it=(i,j)的执行时间为:

硬件利用率:

以五

相关IC型号

热门点击

 

推荐技术资料

罗盘误差及补偿
    造成罗盘误差的主要因素有传感器误差、其他磁材料干扰等。... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!