功率场效应晶体管MOSFET
发布时间:2008/5/28 0:00:00 访问次数:534
mosfet的原意是:mos(metal oxide semiconductor金属氧化物半导体),fet(field effect transistor场效应晶体管),即以金属层(m)的栅极隔着氧化层(o)利用电场的效应来控制半导体(s)的场效应晶体管。
功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的mos型(metal oxide semiconductor fet),简称功率mosfet(power mosfet)。结型功率场效应晶体管一般称作静电感应晶体管(static induction transistor——sit)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于gtr,但其电流容量小,耐压低,一般只适用于功率不超过10kw的电力电子装置。
2.功率mosfet的结构和工作原理
功率mosfet的种类:按导电沟道可分为p沟道和n沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于n(p)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率mosfet主要是n沟道增强型。
2.1功率mosfet的结构
功率mosfet的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率mos管是横向导电器件,功率mosfet大都采用垂直导电结构,又称为vmosfet(vertical mosfet),大大提高了mosfet器件的耐压和耐电流能力。
按垂直导电结构的差异,又分为利用v型槽实现垂直导电的vvmosfet和具有垂直导电双扩散mos结构的vdmosfet(vertical double-diffused mosfet),本文主要以vdmos器件为例进行讨论。
功率mosfet为多元集成结构,如国际整流器公司(international rectifier)的hexfet采用了六边形单元;西门子公司(siemens)的sipmosfet采用了正方形单元;摩托罗拉公司(motorola)的tmos采用了矩形单元按“品”字形排列。
2.2功率mosfet的工作原理
截止:漏源极间加正电源,栅源极间电压为零。p基区与n漂移区之间形成的pn结j1反偏,漏源极之间无电流流过。
导电:在栅源极间加正电压ugs,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面p区中的空穴推开,而将p区中的少子—电子吸引到栅极下面的p区表面
当ugs大于ut(开启电压或阈值电压)时,栅极下p区表面的电子浓度将超过空穴浓度,使p型半导体反型成n型而成为反型层,该反型层形成n沟道而使pn结j1消失,漏极和源极导电。
2.3功率mosfet的基本特性
2.3.1静态特性;其转移特性和输出特性如图2所示。
漏极电流id和栅源间电压ugs的关系称为mosfet的转移特性,id较大时,id与ugs的关系近似线性,曲线的斜率定义为跨导gfs
mosfet的漏极伏安特性(输出特性):截止区(对应于gtr的截止区);饱和区(对应于gtr的放大区);非饱和区(对应于gtr的饱和区)。电力mosfet工作在开关状态,即在截止区和非饱和区之间来回转换。电力mosfet漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。电力mosfet的通态电阻具有正温度系数,对器件并联时的均流有利。
2.3.2动态特性;其测试电路和开关过程波形如图3所示。
开通过程;开通延迟时间td(on) —up前沿时刻到ugs=ut并开始出现id的时刻间的时间段;
上升时间tr— ugs从ut上升到mosfet进入非饱和区的栅压ugsp的时间段;
id稳态值由漏极电源电压ue和漏极负载电阻决定。ugsp的大小和id的稳态值有关,ugs达到ugsp后,在up作用下继续升高直至达到稳态,但id已不变。
开通时间ton—开通延迟时间与上升时间之和。
关断延迟时间td(off) —up下降到零起,cin通过rs和rg放电,ugs按指数曲线下降到ugsp时,id开始减小为零的时间段。
下降时间tf— ugs从ugsp继续下降起,id减小,到ugs
关断时间toff—关断延迟时间和下降时间之和。
2.3.3 mosfet的开关速度。
mosfet的开关速度和cin充放电有很大关系,使用者无法降低cin,但可降
mosfet的原意是:mos(metal oxide semiconductor金属氧化物半导体),fet(field effect transistor场效应晶体管),即以金属层(m)的栅极隔着氧化层(o)利用电场的效应来控制半导体(s)的场效应晶体管。
功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的mos型(metal oxide semiconductor fet),简称功率mosfet(power mosfet)。结型功率场效应晶体管一般称作静电感应晶体管(static induction transistor——sit)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于gtr,但其电流容量小,耐压低,一般只适用于功率不超过10kw的电力电子装置。
2.功率mosfet的结构和工作原理
功率mosfet的种类:按导电沟道可分为p沟道和n沟道。按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于n(p)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率mosfet主要是n沟道增强型。
2.1功率mosfet的结构
功率mosfet的内部结构和电气符号如图1所示;其导通时只有一种极性的载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同,但结构上有较大区别,小功率mos管是横向导电器件,功率mosfet大都采用垂直导电结构,又称为vmosfet(vertical mosfet),大大提高了mosfet器件的耐压和耐电流能力。
按垂直导电结构的差异,又分为利用v型槽实现垂直导电的vvmosfet和具有垂直导电双扩散mos结构的vdmosfet(vertical double-diffused mosfet),本文主要以vdmos器件为例进行讨论。
功率mosfet为多元集成结构,如国际整流器公司(international rectifier)的hexfet采用了六边形单元;西门子公司(siemens)的sipmosfet采用了正方形单元;摩托罗拉公司(motorola)的tmos采用了矩形单元按“品”字形排列。
2.2功率mosfet的工作原理
截止:漏源极间加正电源,栅源极间电压为零。p基区与n漂移区之间形成的pn结j1反偏,漏源极之间无电流流过。
导电:在栅源极间加正电压ugs,栅极是绝缘的,所以不会有栅极电流流过。但栅极的正电压会将其下面p区中的空穴推开,而将p区中的少子—电子吸引到栅极下面的p区表面
当ugs大于ut(开启电压或阈值电压)时,栅极下p区表面的电子浓度将超过空穴浓度,使p型半导体反型成n型而成为反型层,该反型层形成n沟道而使pn结j1消失,漏极和源极导电。
2.3功率mosfet的基本特性
2.3.1静态特性;其转移特性和输出特性如图2所示。
漏极电流id和栅源间电压ugs的关系称为mosfet的转移特性,id较大时,id与ugs的关系近似线性,曲线的斜率定义为跨导gfs
mosfet的漏极伏安特性(输出特性):截止区(对应于gtr的截止区);饱和区(对应于gtr的放大区);非饱和区(对应于gtr的饱和区)。电力mosfet工作在开关状态,即在截止区和非饱和区之间来回转换。电力mosfet漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。电力mosfet的通态电阻具有正温度系数,对器件并联时的均流有利。
2.3.2动态特性;其测试电路和开关过程波形如图3所示。
开通过程;开通延迟时间td(on) —up前沿时刻到ugs=ut并开始出现id的时刻间的时间段;
上升时间tr— ugs从ut上升到mosfet进入非饱和区的栅压ugsp的时间段;
id稳态值由漏极电源电压ue和漏极负载电阻决定。ugsp的大小和id的稳态值有关,ugs达到ugsp后,在up作用下继续升高直至达到稳态,但id已不变。
开通时间ton—开通延迟时间与上升时间之和。
关断延迟时间td(off) —up下降到零起,cin通过rs和rg放电,ugs按指数曲线下降到ugsp时,id开始减小为零的时间段。
下降时间tf— ugs从ugsp继续下降起,id减小,到ugs
关断时间toff—关断延迟时间和下降时间之和。
2.3.3 mosfet的开关速度。
mosfet的开关速度和cin充放电有很大关系,使用者无法降低cin,但可降
上一篇:电子束焊机高压直流电源设计
上一篇:使用电流反馈运放的射频振荡器
热门点击
- 激光打靶游戏机
- 常见连接器和插座介绍
- 电池低电压指示及控制电路设计
- 红外枪打靶游戏
- 准同期并网控制电路
- 电流、磁力线方向演示器
- 镍氢电池充电器(三)
- 跨步电压触电演示器
- 高电压检测电路的设计
- 10kV线路与用户保护定值配合
推荐技术资料
- Seeed Studio
- Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]