位置:51电子网 » 技术资料 » 电源技术

电源芯片随移动电子设备的发展而发

发布时间:2008/5/28 0:00:00 访问次数:403

  在过去二十年间,便携式电子设备的迅速普及推动电源芯片以令人难以置信的速度增长,并且使电源半导体市场成为首当其冲的重要市场。二十年前,几乎所有的电源管理芯片 (ic) 均为各种管理、监控以及转换线路电源(来自于电网的交流电电源或者满足半导体器件要求的直流电电池装置)的器件。

  由于包括手机、便携式媒体播放器、数码相机、个人数字助理、便携式医疗设备、移动视频游戏及平台等许多类似设备在内的便携式电池供电的消费类电子应用的爆炸式增长,这种状况已经发生了翻天覆地的变化。现在,至少有一半的电源管理半导体器件被集成到便携式设备中,这一改变的另一方面还体现在锂离子 (li-ion) 电池数量的迅猛增长上。自 2001 年以来,全球生产的锂离子电池数量增长了四倍多[1]。

  事实上,对于移动电子系统的需求以及随之而来的对更多便携式电源解决方案的需求,才是繁荣的电源管理集成电路市场背后的推动力。半导体产业最近几年的总体年增长率约为 7%,而自 2002 年以来电源芯片一直以 15% 的总体年增长率持续增长[2]。并且,电源半导体有望以这种速度持续增长到 2011 年[3]。总体而言,由于电源
设备的出货量一般会超过半导体器件,因此,电子系统的电源芯片(更确切地说也就是电池供电的移动应用)将会显著增长的说法是勿庸置疑的。

  便携式应用的挑战

  当您对这种具有高功效、小尺寸特点的便携式电源的迫切要求以及当今便携式电源设备提供的复杂功能进行了解时,您就会很容易地发现这种发展趋势的根源所在。在许多移动系统中,要满足所有存在于一个单个移动消费类电子设备中的各种电源的要求就需要使用多个电源芯片。

  例如,在二十年前,一个电子系统中的电压轨数量很少会超过三个或者四个。今天的手机常常会拥有多达 14 个或者更多的电压轨。膝上型电脑通常具有 11 个或者更多的电压轨。一个电压“轨”即为一个由电源装置 (psu) 提供的单电压。每一个电压轨通常要求一个降压(减少)或升压(增加)、调节以及排序的新电压电平转换。这种电压轨的增长可以被部分地归结为摩尔定律,即集成电路的密度每两年翻一番。

  随着芯片制造工艺几何构型在过去的数年中变得越来越小,电压电平也急剧下降,以便支持该新型工艺技术。那种大多数半导体均为 5 伏电压器件的日子一去不复返了。例如,单个手机中的芯片拥有数个低至 0.9 伏(用于数字基带器件)和高至 30 伏(用于一系列为键盘区域和显示器提供背光照明的发光二级管)的电压电平。

  便携式系统中芯片的低电压电平也对系统电源设备的复杂性和精度提出了挑战。几年前,大多数芯片的额定电压电平为 5 伏,电源通常被调节至 5 伏的 5% 或+250 mv 以内。而在当今许多便携式系统中,一个 1.5v 芯片要求电压调节在其 1.5v 电平的 1.5% 以内或者+22 mv 以内。这表明电压调节精度增长了 10 倍。

  充电

  便携式电子应用由电池供电并且为非线路供电的情况增加了系统中电源子系统的复杂性。例如,对一节电力耗尽的锂离子电池进行再充电并非是一个简便易行的过程。使用一个错误的充电曲线会缩短电池的有效使用寿命。

  此外,一个完整的锂离子电池充电过程由三个截然不同的阶段组成。在第一个充电或预充电阶段,电池经过一个短暂的时间段才能获得预充电。第二阶段以恒定电流为特点,该阶段出现在经过一个约为整个充电周期的 20% 到 30%相对较短时间段之后。该恒定电流充电阶段能将电池充电至其全部电量的大约 70% 到 80%。最后充电阶段以恒定电压为特征。这是三个充电阶段中最慢的一个阶段,所需时间占完成整个充电过程时间的 70% 到 80%。恒定电压充电阶段完成电池电量存储容量的最后 20% 到 30%。为锂离子电池监控充电过程的电源组件必须能够管理所有这些阶段,以最大化电池充电效果,并且确保最佳的电池使用寿命。

  根据便携式设备的要求,有几种不同类型的电池充电设备。在那些成本控制比效率更为重要的应用中,线性充电器提供了一种卓越的解决方案。然而,尽管开关充电器比线性充电器更加昂贵,但其功效至少能达到 90%。

  除充电过程本身以外,电源子系统还必须处理其它一些与电池相关的问题。例如,一些便携式系统具有替代电源(例如:能够被用于电池充电的 usb 端口等)。便携式媒体播放器可能会以一种通过连接至壁式插座的一般方法来进行充电,或者,作为另外一种选择,这种设备也可以通过将其 usb 端口连接到另一个设备(例如:膝上型电脑)的 usb 端口来进行充电。

  电源通道管理是一项独特的功能,其容许便携式系统在为电池充电过程中正常工作。电源子系统必须具有足够的复杂程度,以便在将电源用于运行系统的同时对电池进行充电。其它一些电池特征还可包括可能由短路引起的过压或者过电流保护。如果这些异常因素被忽略,那么它们将会破坏系统或电池,也可能对系统和电池都造

  在过去二十年间,便携式电子设备的迅速普及推动电源芯片以令人难以置信的速度增长,并且使电源半导体市场成为首当其冲的重要市场。二十年前,几乎所有的电源管理芯片 (ic) 均为各种管理、监控以及转换线路电源(来自于电网的交流电电源或者满足半导体器件要求的直流电电池装置)的器件。

  由于包括手机、便携式媒体播放器、数码相机、个人数字助理、便携式医疗设备、移动视频游戏及平台等许多类似设备在内的便携式电池供电的消费类电子应用的爆炸式增长,这种状况已经发生了翻天覆地的变化。现在,至少有一半的电源管理半导体器件被集成到便携式设备中,这一改变的另一方面还体现在锂离子 (li-ion) 电池数量的迅猛增长上。自 2001 年以来,全球生产的锂离子电池数量增长了四倍多[1]。

  事实上,对于移动电子系统的需求以及随之而来的对更多便携式电源解决方案的需求,才是繁荣的电源管理集成电路市场背后的推动力。半导体产业最近几年的总体年增长率约为 7%,而自 2002 年以来电源芯片一直以 15% 的总体年增长率持续增长[2]。并且,电源半导体有望以这种速度持续增长到 2011 年[3]。总体而言,由于电源
设备的出货量一般会超过半导体器件,因此,电子系统的电源芯片(更确切地说也就是电池供电的移动应用)将会显著增长的说法是勿庸置疑的。

  便携式应用的挑战

  当您对这种具有高功效、小尺寸特点的便携式电源的迫切要求以及当今便携式电源设备提供的复杂功能进行了解时,您就会很容易地发现这种发展趋势的根源所在。在许多移动系统中,要满足所有存在于一个单个移动消费类电子设备中的各种电源的要求就需要使用多个电源芯片。

  例如,在二十年前,一个电子系统中的电压轨数量很少会超过三个或者四个。今天的手机常常会拥有多达 14 个或者更多的电压轨。膝上型电脑通常具有 11 个或者更多的电压轨。一个电压“轨”即为一个由电源装置 (psu) 提供的单电压。每一个电压轨通常要求一个降压(减少)或升压(增加)、调节以及排序的新电压电平转换。这种电压轨的增长可以被部分地归结为摩尔定律,即集成电路的密度每两年翻一番。

  随着芯片制造工艺几何构型在过去的数年中变得越来越小,电压电平也急剧下降,以便支持该新型工艺技术。那种大多数半导体均为 5 伏电压器件的日子一去不复返了。例如,单个手机中的芯片拥有数个低至 0.9 伏(用于数字基带器件)和高至 30 伏(用于一系列为键盘区域和显示器提供背光照明的发光二级管)的电压电平。

  便携式系统中芯片的低电压电平也对系统电源设备的复杂性和精度提出了挑战。几年前,大多数芯片的额定电压电平为 5 伏,电源通常被调节至 5 伏的 5% 或+250 mv 以内。而在当今许多便携式系统中,一个 1.5v 芯片要求电压调节在其 1.5v 电平的 1.5% 以内或者+22 mv 以内。这表明电压调节精度增长了 10 倍。

  充电

  便携式电子应用由电池供电并且为非线路供电的情况增加了系统中电源子系统的复杂性。例如,对一节电力耗尽的锂离子电池进行再充电并非是一个简便易行的过程。使用一个错误的充电曲线会缩短电池的有效使用寿命。

  此外,一个完整的锂离子电池充电过程由三个截然不同的阶段组成。在第一个充电或预充电阶段,电池经过一个短暂的时间段才能获得预充电。第二阶段以恒定电流为特点,该阶段出现在经过一个约为整个充电周期的 20% 到 30%相对较短时间段之后。该恒定电流充电阶段能将电池充电至其全部电量的大约 70% 到 80%。最后充电阶段以恒定电压为特征。这是三个充电阶段中最慢的一个阶段,所需时间占完成整个充电过程时间的 70% 到 80%。恒定电压充电阶段完成电池电量存储容量的最后 20% 到 30%。为锂离子电池监控充电过程的电源组件必须能够管理所有这些阶段,以最大化电池充电效果,并且确保最佳的电池使用寿命。

  根据便携式设备的要求,有几种不同类型的电池充电设备。在那些成本控制比效率更为重要的应用中,线性充电器提供了一种卓越的解决方案。然而,尽管开关充电器比线性充电器更加昂贵,但其功效至少能达到 90%。

  除充电过程本身以外,电源子系统还必须处理其它一些与电池相关的问题。例如,一些便携式系统具有替代电源(例如:能够被用于电池充电的 usb 端口等)。便携式媒体播放器可能会以一种通过连接至壁式插座的一般方法来进行充电,或者,作为另外一种选择,这种设备也可以通过将其 usb 端口连接到另一个设备(例如:膝上型电脑)的 usb 端口来进行充电。

  电源通道管理是一项独特的功能,其容许便携式系统在为电池充电过程中正常工作。电源子系统必须具有足够的复杂程度,以便在将电源用于运行系统的同时对电池进行充电。其它一些电池特征还可包括可能由短路引起的过压或者过电流保护。如果这些异常因素被忽略,那么它们将会破坏系统或电池,也可能对系统和电池都造

相关IC型号

热门点击

 

推荐技术资料

Seeed Studio
    Seeed Studio绐我们的印象总是和绘画脱离不了... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!