人体表皮电信号无线采集及其应用探索
发布时间:2008/6/3 0:00:00 访问次数:617
    
    
    摘要:活的细胞、组织或器官兴奋时,不论其外部表现如何不同,都伴随着有电的变化,这也是人体电信号产生的原因。这些电信号可以通过仪器记录下来并进行分析,可以获得重要的信息。到目前为止,脑电、心电等都已经广泛地应用与医学和科研中。人体视觉系统在和外部世界互动的过程中,接受到外界的反馈信号后,会自动调整眼球位置以得到清晰的图像,在眼球运动过程中会产生眼电信号,通过贴在两眼外侧的生物电极,可对微弱的眼电信号(eog)进行测量。对眼电信号进行放大滤波并进行分析,可以得到眼球运动的轨迹。本作品正是根据这一原理,设计了一个可以用眼睛控制的无线鼠标,同时陪两个加速传感器,分别用于辅助调整和进行左右键控制,这是对眼电信号应用的一次探索。
    
    关键词:数据采集,信号处理,eog,眼控鼠标
    
    1 引言
    
    活的细胞、组织或器官兴奋时,不论其外部表现如何不同,都伴随着有电的变化,这也是人体电信号产生的原因。这些电信号可以通过仪器记录下来并进行分析,可以获得重要的信息。到目前为止,脑电、心电等都已经广泛地应用与医学和科研中。同样,在眼球运动的过程中,会产生可测量的电位变化,称为眼电 (electro-oculogram,简称eog)。对眼电信号进行放大滤波并进行分析,可以得到眼球运动的轨迹。利用这一原理,就可以利用眼球的运动对计算机界面直接进行操作,实现人脑和计算机的交互。在此,我们设计了一套利用eog信号实现对计算机的实时控制系统,对eog信号进行放大和消躁处理后,对其中的眼动轨迹相关信息进行抽提和分析,用以对计算机进行控制。这一系统代替了传统的鼠标等外接设备进行人机交互的方式,有着很强的新颖性。
    
    2 工作原理
    
    在临床中,眼电(electro -oculogram,eog)记录是应用最为广泛的一种技术。而近几年来,在脑机界面(bci,brian computer interface)研究领域中,eog由于其成本低廉,信号稳定,实用性强以及非侵入性而越来越受到广泛关注。接下来介绍一下系统的原理:
    
    眼球运动:人类视觉系统的最前端,就是人的眼球。人的眼球是一个结构复杂,设计巧妙的光学成像系统。如图1 所示。外界的图像通过角膜,虹膜,晶状体,玻璃体等一系列结构的反复折射,最终在视网膜上形成缩小、倒立的影像。眼部运动的目的是让物体的影像落在视网膜成像最清晰的区域。这意味这眼球要能够任意调整位置,对准目标物。眼球的运动是由6组肌肉控制的,这6组肌肉受到第三,第四和第六脑神经的支配。这些肌肉成对配合,分别控制水平,垂直以及环行移动。结构如图2。
    
    眼球运动可以分为下面几种类型:
    
    1. 扫视(saccadic): 快速的眼球运动,将视觉的焦点从一点马上移到另外一点。
    2. 平滑移动(smooth pursuit):眼球随着位置缓慢变化的物体平滑地移动
    3. 补偿移动(compensatory movements):为了使得头部以及身体移动过程中视觉焦点相对固定而进行的无意识的补偿运动。
    4. 趋异运动(vergence):两只眼球为了保持立体视觉而产生的移动。
    
    
    
    图1:眼球结构图
    
    
    图2:眼部6组肌肉的示意图
    
    eog 信号的产生:眼球前部的角膜在电学特性上是正性的,而视网膜是负性的。根据这一特点,我们可以把眼球看作一个双极子。当将电极放置于皮肤上的时候,眼球这一双极子因为运动而造成的电位变化就可以被测量出来。如果被试向前方直视,我们可以记录到一条稳定的基线。当眼球移动的时候,电位的变化和眼球移动的方向以及角度成线性关系变化。eog可以用来监测距离中央点70度以内眼球的移动,精确度可以达到2度。图3当眼球分别向右移动30度和向左移动15度时其电位的变化。
    
    
    
    
    
    摘要:活的细胞、组织或器官兴奋时,不论其外部表现如何不同,都伴随着有电的变化,这也是人体电信号产生的原因。这些电信号可以通过仪器记录下来并进行分析,可以获得重要的信息。到目前为止,脑电、心电等都已经广泛地应用与医学和科研中。人体视觉系统在和外部世界互动的过程中,接受到外界的反馈信号后,会自动调整眼球位置以得到清晰的图像,在眼球运动过程中会产生眼电信号,通过贴在两眼外侧的生物电极,可对微弱的眼电信号(eog)进行测量。对眼电信号进行放大滤波并进行分析,可以得到眼球运动的轨迹。本作品正是根据这一原理,设计了一个可以用眼睛控制的无线鼠标,同时陪两个加速传感器,分别用于辅助调整和进行左右键控制,这是对眼电信号应用的一次探索。
    
    关键词:数据采集,信号处理,eog,眼控鼠标
    
    1 引言
    
    活的细胞、组织或器官兴奋时,不论其外部表现如何不同,都伴随着有电的变化,这也是人体电信号产生的原因。这些电信号可以通过仪器记录下来并进行分析,可以获得重要的信息。到目前为止,脑电、心电等都已经广泛地应用与医学和科研中。同样,在眼球运动的过程中,会产生可测量的电位变化,称为眼电 (electro-oculogram,简称eog)。对眼电信号进行放大滤波并进行分析,可以得到眼球运动的轨迹。利用这一原理,就可以利用眼球的运动对计算机界面直接进行操作,实现人脑和计算机的交互。在此,我们设计了一套利用eog信号实现对计算机的实时控制系统,对eog信号进行放大和消躁处理后,对其中的眼动轨迹相关信息进行抽提和分析,用以对计算机进行控制。这一系统代替了传统的鼠标等外接设备进行人机交互的方式,有着很强的新颖性。
    
    2 工作原理
    
    在临床中,眼电(electro -oculogram,eog)记录是应用最为广泛的一种技术。而近几年来,在脑机界面(bci,brian computer interface)研究领域中,eog由于其成本低廉,信号稳定,实用性强以及非侵入性而越来越受到广泛关注。接下来介绍一下系统的原理:
    
    眼球运动:人类视觉系统的最前端,就是人的眼球。人的眼球是一个结构复杂,设计巧妙的光学成像系统。如图1 所示。外界的图像通过角膜,虹膜,晶状体,玻璃体等一系列结构的反复折射,最终在视网膜上形成缩小、倒立的影像。眼部运动的目的是让物体的影像落在视网膜成像最清晰的区域。这意味这眼球要能够任意调整位置,对准目标物。眼球的运动是由6组肌肉控制的,这6组肌肉受到第三,第四和第六脑神经的支配。这些肌肉成对配合,分别控制水平,垂直以及环行移动。结构如图2。
    
    眼球运动可以分为下面几种类型:
    
    1. 扫视(saccadic): 快速的眼球运动,将视觉的焦点从一点马上移到另外一点。
    2. 平滑移动(smooth pursuit):眼球随着位置缓慢变化的物体平滑地移动
    3. 补偿移动(compensatory movements):为了使得头部以及身体移动过程中视觉焦点相对固定而进行的无意识的补偿运动。
    4. 趋异运动(vergence):两只眼球为了保持立体视觉而产生的移动。
    
    
    
    图1:眼球结构图
    
    
    图2:眼部6组肌肉的示意图
    
    eog 信号的产生:眼球前部的角膜在电学特性上是正性的,而视网膜是负性的。根据这一特点,我们可以把眼球看作一个双极子。当将电极放置于皮肤上的时候,眼球这一双极子因为运动而造成的电位变化就可以被测量出来。如果被试向前方直视,我们可以记录到一条稳定的基线。当眼球移动的时候,电位的变化和眼球移动的方向以及角度成线性关系变化。eog可以用来监测距离中央点70度以内眼球的移动,精确度可以达到2度。图3当眼球分别向右移动30度和向左移动15度时其电位的变化。