基于单片机控制的三路智能同步采集卡设计
发布时间:2008/5/27 0:00:00 访问次数:359
1 系统结构及原理
1.1 系统结构图
根据系统设计指标及现场测试的需要,本系统采用串并行结构(见图1),同时考虑到远程传输和数据处理的需要,本采集卡利用单片机的串行通讯口并配以相应接口可直接挂接到系统总线上以实现与上位机的实时通讯。
1.2 系统基本原理
与通常的数据采集系统相比,该系统中引入了锁相环技术以实现三路信号的同步采集和采集速率的自动调节;另通过多路开关的有机组合在实现三路分时转换的同时也实现了双极性a/d转换器量程的自动转换,从而提高了系统的灵活性和适应能力。
1.2.1 锁相环技术
锁相环技术也称自动相位控制技术,于20世纪30年代发展起来,现已广泛应用于通信、电子、测控等领域,其结构组成见图2,主要由相位比较器(pd亦称鉴相器),低通滤波器(lpf),压控振荡器(vco)组成。
其基本原理如下:pd将vi(t)与vo(t)的相位进行比较,产生一个与二者相位差成正比的误差电压vφ(t),vφ(t)再经由lpf滤波(滤除高频分量),得到控制电压vd(t),并加到vco的控制端使vco振荡器输出频率f2向f1靠拢,直至δf=0,即f2=f1,从而实现vi(t)、vo(t)两信号的频率相同而相位差保持恒定(同步),即实现频率自动跟踪和相位锁定。
1.2.2 集成锁相环cd4046cd4046
锁相环技术尽管出现于20世纪30年代,但由于组成锁相环的是一些分离元件,因此使其成本高且性能低;同时由于其它一些技术等因素的影响,极大地限制了其大范围的应用(早期主要应用于电视接收机的行扫描电路和供色度信号解调的副载波振荡电路等),直到20世纪70年代初期,随着微电子技术及相关技术的快速发展,使得制作低成本、高性能集成锁相环电路/芯片得以实现。现在,锁相环技术得到了快速发展,如今已广泛应用于工业、通信等领域。作为目前国内外最具代表性也是最常见的集成锁相环芯片cd4046cd4046,由于其集成度高、性价比高、多功能、易组合等优点而得到了广泛使用,其管角排列及逻辑图见图3。
从图3可知:vco的输出可以经由一除法器进行n分频后,再送至相位比较器ⅰ,并进而与vi进行相位比较,最后使f2′=f1,二者的相位差恒定,
1 系统结构及原理
1.1 系统结构图
根据系统设计指标及现场测试的需要,本系统采用串并行结构(见图1),同时考虑到远程传输和数据处理的需要,本采集卡利用单片机的串行通讯口并配以相应接口可直接挂接到系统总线上以实现与上位机的实时通讯。
1.2 系统基本原理
与通常的数据采集系统相比,该系统中引入了锁相环技术以实现三路信号的同步采集和采集速率的自动调节;另通过多路开关的有机组合在实现三路分时转换的同时也实现了双极性a/d转换器量程的自动转换,从而提高了系统的灵活性和适应能力。
1.2.1 锁相环技术
锁相环技术也称自动相位控制技术,于20世纪30年代发展起来,现已广泛应用于通信、电子、测控等领域,其结构组成见图2,主要由相位比较器(pd亦称鉴相器),低通滤波器(lpf),压控振荡器(vco)组成。
其基本原理如下:pd将vi(t)与vo(t)的相位进行比较,产生一个与二者相位差成正比的误差电压vφ(t),vφ(t)再经由lpf滤波(滤除高频分量),得到控制电压vd(t),并加到vco的控制端使vco振荡器输出频率f2向f1靠拢,直至δf=0,即f2=f1,从而实现vi(t)、vo(t)两信号的频率相同而相位差保持恒定(同步),即实现频率自动跟踪和相位锁定。
1.2.2 集成锁相环cd4046cd4046
锁相环技术尽管出现于20世纪30年代,但由于组成锁相环的是一些分离元件,因此使其成本高且性能低;同时由于其它一些技术等因素的影响,极大地限制了其大范围的应用(早期主要应用于电视接收机的行扫描电路和供色度信号解调的副载波振荡电路等),直到20世纪70年代初期,随着微电子技术及相关技术的快速发展,使得制作低成本、高性能集成锁相环电路/芯片得以实现。现在,锁相环技术得到了快速发展,如今已广泛应用于工业、通信等领域。作为目前国内外最具代表性也是最常见的集成锁相环芯片cd4046cd4046,由于其集成度高、性价比高、多功能、易组合等优点而得到了广泛使用,其管角排列及逻辑图见图3。
从图3可知:vco的输出可以经由一除法器进行n分频后,再送至相位比较器ⅰ,并进而与vi进行相位比较,最后使f2′=f1,二者的相位差恒定,