RegisteredSDRAM在MPC8241系统中的应用
发布时间:2007/4/12 0:00:00 访问次数:514
摘要 介绍Registered SDRAM的工作原理和接口芯片,以及在MPC8241嵌入式系统中进行Registered SDRAM电路设计的实例;给出电路原理设计和PCB布局布线的一般规则。
关键词 RegisteredSDRAM MPC8241 接口技术
在嵌入式系统中,传统的SDRAM接口电路设计模式是系统主控芯片直接驱动所有内存芯片的地址/控制信号。当内存芯片数量较多时,这类直接驱动的设计会出现因主控芯片的地址/控制信号驱动能力不足,而导致系统内存工作不稳定的问题。Registered SDRAM是指具有地ti/控制信号锁存电路的SDRAM模块,特点是系统主控芯片的地址/控制信号不直接驱动内存芯片,而是通过地址/控制信号锁存电路驱动内存芯片的地址/控制信号。Registered SDRAM模式降低了主控制芯片地址/控制信号直接驱动的逻辑门数,同时提高了系统SDRAM接口电路的负载能力。当系统的内存芯片数量较多时,Regis_tered SDRAM是一种较好的设计方法。
1 Reqistered SDRAM的工作原理
在Registered SDRAM模式下,当主控芯片对SDRAM芯片进行访问时,数据总线信号(DATA)要比传统模式多延迟一个时钟周期。以主控芯片对SDRAM芯片进行单字节写时的操作时序为例,对两种模式进行对比说明,其他时序的对比不再详述。
对比图1、图2的时序可知,在主控芯片对SDRAM总线发起操作(以CS、CDRAS同时为低电平的时刻为发起时间)到数据总线(DATA)的信号(DO)有效期间,传统模式为2个时钟周期,Registered SDRAM模式为3个时钟周期。Registered SDRAM模式在硬件电路上采用地址/控制信号,要先经过锁存电路的锁存再延迟一个时钟周期输出的方法,消除这一时钟周期的差异。
典型Registered SDRAM接口电路由二部分组成:地址/控制信号锁存电路与时钟扩展电路。地址/控制信号锁存电路通常由2片多通道D触发锁存芯片构成。该电路将主控芯片SDRAM接口的控制信号(CS,DQM[O:7],SDRAS,SDCAS。CKE,WE)和地址信号(ADDR)进行锁存,并将锁存后输出的信号与所有内存芯片相对应的地址/控制信号输入端连接。锁存时钟由时钟扩展电路产生。在锁存时钟的上升沿对地址/控制信号进行锁存。地址/控制信号锁存电路的另一功能,是对主控芯片与SDRAM芯片之间的连接进行电气隔离,使主控制芯片地址/控制信号直接驱动的逻辑门数得到降低,从而提高系统SDRAM接口电路的驱动能力。
时钟扩展电路的功能是对主控制芯片输出的SDRAM时钟进行扩展,即将输入的一路SDRAM时钟信号,扩展为多路同频时钟输出。其中一路输出时钟作为反馈时钟,反馈给时钟扩展芯片的反馈时钟输入端;另外两路输出时钟作为地址/控制信号锁存电路的锁存时钟,分别驱动2片锁存芯片;其他输出时钟分别输出给不同的SDRAM芯片。原则上,每片SDRAM芯片均有独立的输入时钟。在时钟扩展电路中,可以通过调节各时钟的对地由容值.对各时钟间的相关系进行调整。
对SDRAM芯片而言,Registered SDRAM模式的操作时序与传统模式的操作时序是等同的。这是因为在Regigtered SDRAM模式下,虽然数据信号较地址/控制信号延迟1个时钟周期,但因地址/控制信号要先经过锁存电路的锁存再延迟1个时钟周期输出,因此数据信号与地址/控制信号能同时有效到达SDRAM芯片。这一能同时有效到达的特性与传统模式的时序特性是相同的。
2 Registered SDRAM接口电路芯片简介
2.1 CDCF2510A
CDCF2510A为TI公司生产的低skew(skew<±125ps)、低抖动(jitte_cyc_cyc<士70 ps)的PLL时钟驱动器。工作频率范围为25~140 MHz。可将1路输入时钟扩展为10路同频输出时钟,同时具有输出时钟反馈功能。该芯片主要用于SDRAM接口的时钟扩展。芯片的内部逻辑电路如图3所示。
图3所示的CLK为输入时钟;1Y0~1Y9为10路输出扩展时钟;FBOUT、FBIN分别为反馈时钟的输出脚与输入脚;G为扩展时钟输出允许控制脚,高电平有效。
2.2 74ALVCF 162835APA
74ALvcFl62835APA为多通道D锁存器。设计采用Fairchild公司的产品。该芯片可同时锁存18位的输入信号。在供电电压为3.O~3.6 V时,锁存延迟tpd(CLK锁存开始到数据输出有效的时间)最大为3.7 ns。
3 Registered SDRAM在MPC8241嵌入式系统中的设计实现
MPC8241为摩托罗拉公司生产的较高性能32位嵌入式CPU,内部主要集成了32位PCI总线接口,SDRAM接口以及可与Flash芯片或简单逻辑接口芯片(如UART控制芯片)等连接的外围总线。其SDRAM接口可工作于多种模式。本设计采用Registered SDRAM模
摘要 介绍Registered SDRAM的工作原理和接口芯片,以及在MPC8241嵌入式系统中进行Registered SDRAM电路设计的实例;给出电路原理设计和PCB布局布线的一般规则。
关键词 RegisteredSDRAM MPC8241 接口技术
在嵌入式系统中,传统的SDRAM接口电路设计模式是系统主控芯片直接驱动所有内存芯片的地址/控制信号。当内存芯片数量较多时,这类直接驱动的设计会出现因主控芯片的地址/控制信号驱动能力不足,而导致系统内存工作不稳定的问题。Registered SDRAM是指具有地ti/控制信号锁存电路的SDRAM模块,特点是系统主控芯片的地址/控制信号不直接驱动内存芯片,而是通过地址/控制信号锁存电路驱动内存芯片的地址/控制信号。Registered SDRAM模式降低了主控制芯片地址/控制信号直接驱动的逻辑门数,同时提高了系统SDRAM接口电路的负载能力。当系统的内存芯片数量较多时,Regis_tered SDRAM是一种较好的设计方法。
1 Reqistered SDRAM的工作原理
在Registered SDRAM模式下,当主控芯片对SDRAM芯片进行访问时,数据总线信号(DATA)要比传统模式多延迟一个时钟周期。以主控芯片对SDRAM芯片进行单字节写时的操作时序为例,对两种模式进行对比说明,其他时序的对比不再详述。
对比图1、图2的时序可知,在主控芯片对SDRAM总线发起操作(以CS、CDRAS同时为低电平的时刻为发起时间)到数据总线(DATA)的信号(DO)有效期间,传统模式为2个时钟周期,Registered SDRAM模式为3个时钟周期。Registered SDRAM模式在硬件电路上采用地址/控制信号,要先经过锁存电路的锁存再延迟一个时钟周期输出的方法,消除这一时钟周期的差异。
典型Registered SDRAM接口电路由二部分组成:地址/控制信号锁存电路与时钟扩展电路。地址/控制信号锁存电路通常由2片多通道D触发锁存芯片构成。该电路将主控芯片SDRAM接口的控制信号(CS,DQM[O:7],SDRAS,SDCAS。CKE,WE)和地址信号(ADDR)进行锁存,并将锁存后输出的信号与所有内存芯片相对应的地址/控制信号输入端连接。锁存时钟由时钟扩展电路产生。在锁存时钟的上升沿对地址/控制信号进行锁存。地址/控制信号锁存电路的另一功能,是对主控芯片与SDRAM芯片之间的连接进行电气隔离,使主控制芯片地址/控制信号直接驱动的逻辑门数得到降低,从而提高系统SDRAM接口电路的驱动能力。
时钟扩展电路的功能是对主控制芯片输出的SDRAM时钟进行扩展,即将输入的一路SDRAM时钟信号,扩展为多路同频时钟输出。其中一路输出时钟作为反馈时钟,反馈给时钟扩展芯片的反馈时钟输入端;另外两路输出时钟作为地址/控制信号锁存电路的锁存时钟,分别驱动2片锁存芯片;其他输出时钟分别输出给不同的SDRAM芯片。原则上,每片SDRAM芯片均有独立的输入时钟。在时钟扩展电路中,可以通过调节各时钟的对地由容值.对各时钟间的相关系进行调整。
对SDRAM芯片而言,Registered SDRAM模式的操作时序与传统模式的操作时序是等同的。这是因为在Regigtered SDRAM模式下,虽然数据信号较地址/控制信号延迟1个时钟周期,但因地址/控制信号要先经过锁存电路的锁存再延迟1个时钟周期输出,因此数据信号与地址/控制信号能同时有效到达SDRAM芯片。这一能同时有效到达的特性与传统模式的时序特性是相同的。
2 Registered SDRAM接口电路芯片简介
2.1 CDCF2510A
CDCF2510A为TI公司生产的低skew(skew<±125ps)、低抖动(jitte_cyc_cyc<士70 ps)的PLL时钟驱动器。工作频率范围为25~140 MHz。可将1路输入时钟扩展为10路同频输出时钟,同时具有输出时钟反馈功能。该芯片主要用于SDRAM接口的时钟扩展。芯片的内部逻辑电路如图3所示。
图3所示的CLK为输入时钟;1Y0~1Y9为10路输出扩展时钟;FBOUT、FBIN分别为反馈时钟的输出脚与输入脚;G为扩展时钟输出允许控制脚,高电平有效。
2.2 74ALVCF 162835APA
74ALvcFl62835APA为多通道D锁存器。设计采用Fairchild公司的产品。该芯片可同时锁存18位的输入信号。在供电电压为3.O~3.6 V时,锁存延迟tpd(CLK锁存开始到数据输出有效的时间)最大为3.7 ns。
3 Registered SDRAM在MPC8241嵌入式系统中的设计实现
MPC8241为摩托罗拉公司生产的较高性能32位嵌入式CPU,内部主要集成了32位PCI总线接口,SDRAM接口以及可与Flash芯片或简单逻辑接口芯片(如UART控制芯片)等连接的外围总线。其SDRAM接口可工作于多种模式。本设计采用Registered SDRAM模
热门点击
- OrCAD/PSpice9偏压点和直流扫描分
- 16位Σ-ΔA/D转换器AD7705与微控制
- 有限带宽信号的采样和混叠分析
- 一种增大放大器增益的方法
- LTC6910系列数字控制可编程增益放大器原
- 四通道四象限模拟乘法器MLT04
- 可编程多路A/D转换芯片THS1206的原理
- 使用Verilog实现基于FPGA的SDRA
- 基于FCHIP2指纹芯片的应用方案
- PCB线路板抄板方法及步骤
推荐技术资料
- 泰克新发布的DSA830
- 泰克新发布的DSA8300在一台仪器中同时实现时域和频域分析,DS... [详细]