基于TMS320LF2407的馈线终端装置设计
发布时间:2008/5/27 0:00:00 访问次数:480
1引言
随着国民经济的迅速发展,10 kv配电网络越来越复杂,配电线路越来越多,怎样监测和控制配电线路,保证配电网供电安全和稳定可靠运行成为配电自动化的关键。在配电自动化系统中,馈线自动化是配电自动化的基础,而作为馈线自动化系统中核心设备的馈线终端装置则成为配电自动化系统成功实施的关键。馈线终端装置简称ftu(feeder terminal unit)[1],安装在10 kv馈电线路上,对柱上开关进行监控,完成遥测、遥控、遥信,故障检测功能,并与配电自动化主站通信,提供配电系统运行情况和各种参数即监测控制所需信息,包括开关状态、电能参数、相间故障、接地故障以及故障时的参数,并执行配电主站下发的命令,对配电设备进行调节和控制,实现故障定位、故障隔离和非故障区域快速恢复供电功能。
本系统采用先进的dsp技术,以ti公司的tms320lf2407为主控制器,完成馈线终端单元的研究与设计。
tms320lf2407采用3.3 v电压供电,减少了控制器的功耗,40 mi/s的执行速度,32 k×16位的片内程序flash。2.5 k×16位的程序/数据片内ram,还具有pwm通道、捕获单元、a/d转换器、4级的流水线技术和专门的16位硬件乘法器,处理速度高。适用于处理大运算量的实时任务。tms320lf2407内部集成了大量系统资源,降低了系统的设计成本。
2 系统硬件设计
系统硬件设计将ftu分为上、下两层板。下层是信息采集和控制板,包括pt、ct、光电耦合器、控制继电器、串口电平转换器等组成的数据采集、数字信号控制和通信等模块;上层是cpu板,包括dsp、锁存器等组成的数据处理、开关量输入、输出等模块。这样ftu结构具有层次化、模块化,抗干扰性强并且方便系统调试。
2.1 系统的总体设计
系统主要分为模拟量数据采集和转换模块、开关量输入输出模块、通信模块、时钟模块、键盘显示模块、外扩存储器模块、电源模块等。系统组成框图如图1所示。
2.2 模拟信号采集与转换电路
模拟量输入采用交流采样技术。电网中的电网电压和电流首先经过现场一次大功率pt和ct变换成为0 v~100 v和0 a~5 a的交流电量,然后再经过二次pt和ct变换成为0 v~5 v的电压信号,再经过滤波处理以消除高次谐波和噪声信号再进行功率放大,然后送人md转换器。模拟信号调理电路如图2所示。
为了实现对电流、电压以及二者之间相位关系的准确测量,采用了同步采样技术。采用两片max125完成模拟量输入的同步采样,从max125输出的数据直接输入到dsp进行处理。max125是具有同步采样功能的14位a/d转换器,可以消除因非同时采样引起的电流和电压的相位差。两片max125构成的采样电路如图3所示。
各相电压的模拟量输入连接到第一片max125的a组的前三个通道,各相电流的模拟量输入连接到第二片max125的a组的前三个通道,剩余的通道上接maxl25的输出参考电压+2.5 v,用于进行a/d自检。两片maxl25的转换启动信号convst由tms320lf2407的定时器3中断实现,两片max125的转换完成信号int通过与非门接到tms320lf2407的xint2。dsp在中断程序中从maxl25的ram中读取转换结果,然后对结果进行实时处理。由于max125的数字信号为5 v电平,不能直接驱动tms320lf2407的3.3 v电平,因此要通过74lvc4245进行电平转换。
另外本系统扩展了两片is61lv6416 sram存储器,由于tms320lf2407是低压器件,因此选用低电压3.3 v供电的is61lv6416,接线简单。一片用作数据存储器,另一片用作调试阶段的程序存储器。因为在研发调试阶段,一般把程序装载到ram中运行,这样编程速度和效率都会得到提高。外部存储选通采用74hc32,每个或门的两个输入端接
tms320lf2407的strb和rd、we,如果两者都为低电平,则读写选通。在调试阶段is61lv6416的片选信号ce与tms320lf2407的ps连接,调试结束后,ce接高电平。
2.3 开关量信号输入输出电路
遥信输入的信号和遥控输出的信号都是开关量.开关量作为信号源时本身干扰比较大。本系统采用光电隔离去除干扰,设计8路开关量遥信输入信号,主要对馈电线路柱上开关的当前位置以及通信是否正常和储能完成情况等重要状态进行采集,对馈电线路保护动作情况进行遥信。开关量经过光电隔离后,直接接到dsp的:i/o口。设计3路开关量输出控制信号,控制继电器实现保护功能。
2.4 时钟电路
由于整个系统需要定时采集数据,记录超过门限值的时间,统计总的掉电时间,因此必须具有在线系统实时时钟。本系统采用了实时时钟集成电路模块ds12887,ds12887具有秒、分钟、小时、日、
1引言
随着国民经济的迅速发展,10 kv配电网络越来越复杂,配电线路越来越多,怎样监测和控制配电线路,保证配电网供电安全和稳定可靠运行成为配电自动化的关键。在配电自动化系统中,馈线自动化是配电自动化的基础,而作为馈线自动化系统中核心设备的馈线终端装置则成为配电自动化系统成功实施的关键。馈线终端装置简称ftu(feeder terminal unit)[1],安装在10 kv馈电线路上,对柱上开关进行监控,完成遥测、遥控、遥信,故障检测功能,并与配电自动化主站通信,提供配电系统运行情况和各种参数即监测控制所需信息,包括开关状态、电能参数、相间故障、接地故障以及故障时的参数,并执行配电主站下发的命令,对配电设备进行调节和控制,实现故障定位、故障隔离和非故障区域快速恢复供电功能。
本系统采用先进的dsp技术,以ti公司的tms320lf2407为主控制器,完成馈线终端单元的研究与设计。
tms320lf2407采用3.3 v电压供电,减少了控制器的功耗,40 mi/s的执行速度,32 k×16位的片内程序flash。2.5 k×16位的程序/数据片内ram,还具有pwm通道、捕获单元、a/d转换器、4级的流水线技术和专门的16位硬件乘法器,处理速度高。适用于处理大运算量的实时任务。tms320lf2407内部集成了大量系统资源,降低了系统的设计成本。
2 系统硬件设计
系统硬件设计将ftu分为上、下两层板。下层是信息采集和控制板,包括pt、ct、光电耦合器、控制继电器、串口电平转换器等组成的数据采集、数字信号控制和通信等模块;上层是cpu板,包括dsp、锁存器等组成的数据处理、开关量输入、输出等模块。这样ftu结构具有层次化、模块化,抗干扰性强并且方便系统调试。
2.1 系统的总体设计
系统主要分为模拟量数据采集和转换模块、开关量输入输出模块、通信模块、时钟模块、键盘显示模块、外扩存储器模块、电源模块等。系统组成框图如图1所示。
2.2 模拟信号采集与转换电路
模拟量输入采用交流采样技术。电网中的电网电压和电流首先经过现场一次大功率pt和ct变换成为0 v~100 v和0 a~5 a的交流电量,然后再经过二次pt和ct变换成为0 v~5 v的电压信号,再经过滤波处理以消除高次谐波和噪声信号再进行功率放大,然后送人md转换器。模拟信号调理电路如图2所示。
为了实现对电流、电压以及二者之间相位关系的准确测量,采用了同步采样技术。采用两片max125完成模拟量输入的同步采样,从max125输出的数据直接输入到dsp进行处理。max125是具有同步采样功能的14位a/d转换器,可以消除因非同时采样引起的电流和电压的相位差。两片max125构成的采样电路如图3所示。
各相电压的模拟量输入连接到第一片max125的a组的前三个通道,各相电流的模拟量输入连接到第二片max125的a组的前三个通道,剩余的通道上接maxl25的输出参考电压+2.5 v,用于进行a/d自检。两片maxl25的转换启动信号convst由tms320lf2407的定时器3中断实现,两片max125的转换完成信号int通过与非门接到tms320lf2407的xint2。dsp在中断程序中从maxl25的ram中读取转换结果,然后对结果进行实时处理。由于max125的数字信号为5 v电平,不能直接驱动tms320lf2407的3.3 v电平,因此要通过74lvc4245进行电平转换。
另外本系统扩展了两片is61lv6416 sram存储器,由于tms320lf2407是低压器件,因此选用低电压3.3 v供电的is61lv6416,接线简单。一片用作数据存储器,另一片用作调试阶段的程序存储器。因为在研发调试阶段,一般把程序装载到ram中运行,这样编程速度和效率都会得到提高。外部存储选通采用74hc32,每个或门的两个输入端接
tms320lf2407的strb和rd、we,如果两者都为低电平,则读写选通。在调试阶段is61lv6416的片选信号ce与tms320lf2407的ps连接,调试结束后,ce接高电平。
2.3 开关量信号输入输出电路
遥信输入的信号和遥控输出的信号都是开关量.开关量作为信号源时本身干扰比较大。本系统采用光电隔离去除干扰,设计8路开关量遥信输入信号,主要对馈电线路柱上开关的当前位置以及通信是否正常和储能完成情况等重要状态进行采集,对馈电线路保护动作情况进行遥信。开关量经过光电隔离后,直接接到dsp的:i/o口。设计3路开关量输出控制信号,控制继电器实现保护功能。
2.4 时钟电路
由于整个系统需要定时采集数据,记录超过门限值的时间,统计总的掉电时间,因此必须具有在线系统实时时钟。本系统采用了实时时钟集成电路模块ds12887,ds12887具有秒、分钟、小时、日、