位置:51电子网 » 技术资料 » EDA/PLD

FPGA作为协处理器在实时系统中的应用

发布时间:2007/9/11 0:00:00 访问次数:473

   摘 要: 通过对实时系统中采用软硬件设计优缺点的比较,提出使用FPGA作为协处理器来提高系统整体性能的观点,并且通过介绍直线提取中的相位编组算法的实现作为具体实例,进一步阐述FPGA作为协处理器的结构特点及设计原则。

    关键词: FPGA 协处理器 实时性 直线提取

    实时系统一般都不是通用的,往往是针对具体的任务而设计的。软件编程的优点是设计调试灵活。无论多复杂的任务,只要给出算法,我们一定能够通过软件编程的方式来实现,而且调试、修改都容易得多。缺点是执行指令的效率不高,单CPU只能串行地执行指令(多CPU方案确实是克服这一缺点的有效办法,但是大大增加了软硬件的复杂度)。对于一项任务,软件都要将它不断分解,最终变成CPU可执行的机器语言,这种化整为零的指令方式正是软件的优点,同时也成了它的缺点。执行一条指令一般需取指令、解码、取操作数、执行四步。虽然CPU内部有了cache,实行流水指令操作,但是如果语句中有大量的跳转语句,就会使流水线频繁中断,并且使cache的命中率降低。专用硬件的特点是速度快,便于进行并行性设计,是满足实时性要求最好的方法。其缺点在于设计周期长,调试修改不容易,受到可用器件的实际限制,复杂的算法难以完全用硬件来完成。从以上的分析中,我们看到软硬件设计有各自的优缺点,能否将软硬件各自的优点结合起来呢?FPGA出现后,由于它设计输入方式灵活,设计周期短,片内资源丰富,可无限次加载等特点,很适合对具体的任务进行设计。我们可以用它来发挥硬件速度快的特点完成低层的、大量重复使用的任务。而处理器在上层实时调用FPGA。FPGA就象一个硬件函数,这种结构既可以发挥硬件的高速性,又利用了软件的灵活性。两者的结合可以极大地提高整体处理速度,而且开发周期短,修改方便。

    下面以图像处理中的直线提取算法的实现为例,来说明FPGA作为协处理器在实时系统中的应用。

    1 相位编组算法实现直线提取

   1.1 相位编组算法实现直线提取的原理

    直线提取就是将图像中明暗变化的边缘以轮廓线或边界线的形式提取出来。相位编组算法是直线提取中比较有效的一种。其算法框图如图1。

    一帧图像的象素逐行输入,计算梯度方向角是先对图像的每个像素求x方向上的差分Dx和y方向上的差分Dy。arctg(Dy/Dx)是该点梯度的正切值。梯度方向代表了该点周围明暗变化最剧烈的方向。接下来

      

    相位编组是将所有具有相同或相近方向角且几何位置连通(8连通或4连通)的点归为一个点集,该集合就是直线的点集。实际上,图像中大部分的点周围明暗变化很小,我们只对M值大于一个给定的阀值Threshold的点进行编组。为了减少下一步处理的数据量,我们把满足M大于阀值的点写成水平跑码的形式,即把水平位置相邻且方向值θ相同的点编为一个跑码。然后每一行的跑码与上一行的跑码进行比较,几何位置连通且方向值相近的跑码归为一类。这样,就得到整个图像中的所有直线的点集合了。

    得到直线的点集后,用最小二乘法对每个点集拟合出直线。

   1.2 系统的软硬件划分

   系统在实现算法的前提下对实时性有较为苛刻的要求,图像大小为512×512,图像数据的传输速率为5MByte/s,两帧的间隔为0.6秒,要求系统提取直线的时间不得超过0.5秒。分析上面的框图,要做的处理非常多,包括对图像进行求差、求和运算、二维梯度场计算、相位编组、直线拟合等不同层次不同类别的处理和计算,如果完全由软件做,为了达到所要求的实时性,CPU的主频至少要250MHz以上,现有的高速DSP难以胜任。所以,必须考虑一部分任务由专用硬件来完成。经过严密的论证,最后系统采用了图2所示的结构。

    FPGA1和FPGA2选用XILNX公司的XC5210,DSP选用内部主频为20MHz的TMS320C40。求梯度、求反正切及编码等步骤属于像素级

   摘 要: 通过对实时系统中采用软硬件设计优缺点的比较,提出使用FPGA作为协处理器来提高系统整体性能的观点,并且通过介绍直线提取中的相位编组算法的实现作为具体实例,进一步阐述FPGA作为协处理器的结构特点及设计原则。

    关键词: FPGA 协处理器 实时性 直线提取

    实时系统一般都不是通用的,往往是针对具体的任务而设计的。软件编程的优点是设计调试灵活。无论多复杂的任务,只要给出算法,我们一定能够通过软件编程的方式来实现,而且调试、修改都容易得多。缺点是执行指令的效率不高,单CPU只能串行地执行指令(多CPU方案确实是克服这一缺点的有效办法,但是大大增加了软硬件的复杂度)。对于一项任务,软件都要将它不断分解,最终变成CPU可执行的机器语言,这种化整为零的指令方式正是软件的优点,同时也成了它的缺点。执行一条指令一般需取指令、解码、取操作数、执行四步。虽然CPU内部有了cache,实行流水指令操作,但是如果语句中有大量的跳转语句,就会使流水线频繁中断,并且使cache的命中率降低。专用硬件的特点是速度快,便于进行并行性设计,是满足实时性要求最好的方法。其缺点在于设计周期长,调试修改不容易,受到可用器件的实际限制,复杂的算法难以完全用硬件来完成。从以上的分析中,我们看到软硬件设计有各自的优缺点,能否将软硬件各自的优点结合起来呢?FPGA出现后,由于它设计输入方式灵活,设计周期短,片内资源丰富,可无限次加载等特点,很适合对具体的任务进行设计。我们可以用它来发挥硬件速度快的特点完成低层的、大量重复使用的任务。而处理器在上层实时调用FPGA。FPGA就象一个硬件函数,这种结构既可以发挥硬件的高速性,又利用了软件的灵活性。两者的结合可以极大地提高整体处理速度,而且开发周期短,修改方便。

    下面以图像处理中的直线提取算法的实现为例,来说明FPGA作为协处理器在实时系统中的应用。

    1 相位编组算法实现直线提取

   1.1 相位编组算法实现直线提取的原理

    直线提取就是将图像中明暗变化的边缘以轮廓线或边界线的形式提取出来。相位编组算法是直线提取中比较有效的一种。其算法框图如图1。

    一帧图像的象素逐行输入,计算梯度方向角是先对图像的每个像素求x方向上的差分Dx和y方向上的差分Dy。arctg(Dy/Dx)是该点梯度的正切值。梯度方向代表了该点周围明暗变化最剧烈的方向。接下来

      

    相位编组是将所有具有相同或相近方向角且几何位置连通(8连通或4连通)的点归为一个点集,该集合就是直线的点集。实际上,图像中大部分的点周围明暗变化很小,我们只对M值大于一个给定的阀值Threshold的点进行编组。为了减少下一步处理的数据量,我们把满足M大于阀值的点写成水平跑码的形式,即把水平位置相邻且方向值θ相同的点编为一个跑码。然后每一行的跑码与上一行的跑码进行比较,几何位置连通且方向值相近的跑码归为一类。这样,就得到整个图像中的所有直线的点集合了。

    得到直线的点集后,用最小二乘法对每个点集拟合出直线。

   1.2 系统的软硬件划分

   系统在实现算法的前提下对实时性有较为苛刻的要求,图像大小为512×512,图像数据的传输速率为5MByte/s,两帧的间隔为0.6秒,要求系统提取直线的时间不得超过0.5秒。分析上面的框图,要做的处理非常多,包括对图像进行求差、求和运算、二维梯度场计算、相位编组、直线拟合等不同层次不同类别的处理和计算,如果完全由软件做,为了达到所要求的实时性,CPU的主频至少要250MHz以上,现有的高速DSP难以胜任。所以,必须考虑一部分任务由专用硬件来完成。经过严密的论证,最后系统采用了图2所示的结构。

    FPGA1和FPGA2选用XILNX公司的XC5210,DSP选用内部主频为20MHz的TMS320C40。求梯度、求反正切及编码等步骤属于像素级

相关IC型号

热门点击

 

推荐技术资料

声道前级设计特点
    与通常的Hi-Fi前级不同,EP9307-CRZ这台分... [详细]
版权所有:51dzw.COM
深圳服务热线:13751165337  13692101218
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式


 复制成功!