MAX274在变压器铁芯在线监测中的应用
发布时间:2007/9/8 0:00:00 访问次数:516
摘要:针对变压器铁芯接地电流在线监测项目中现场干扰比较严重的问题,给出了采用Maxim公司有源滤波芯片MAX274设计有源滤波器的方法。同时给出了实验结果以及应用注意事项。
关键词:MAX274; 有源滤波器; 变压器铁芯; 在线监测
大型变压器在运行时,其铁芯接地电流很小,约为几毫安到几十毫安,但当变压器发生铁芯多点接地故障时,其铁芯接地电流将增大到几安培甚至几十安培,从而会导致局部铁芯过热,严重时可能造成轻瓦斯动作甚至重瓦斯动作跳闸。
目前,现场人员多采用钳形电流表夹住铁芯接地线来监测其电流,但由于变压器强磁场的干扰,测量值很不精确,甚至出现同一测量点几次测量值差别迥异的情况,这样测量的参考价值值得怀疑;而国内有些单位研制的自动监测装置虽能及时发现多点接地故障,但缺乏故障后的实时监测功能。为此,笔者设计了一种基于GSM通讯的在线监测装置,较好地解决了变压器铁芯接地电流在线监测的问题。为了解决正常状态下接地电流很小,受到的现场干扰却比较严重的问题,设计中采用了Maxim公司开发的8阶连续时间滤波器芯片MAX274。实践证明MAX274的滤波效果比较理想。
1 在线监测装置的系统组成
为尽量如实反映变压器接地电流信号的情况,笔者在图1所示的一次接线图的变压器接地线上串接了一个2Ω的无感电阻,这样就将铁芯接地电流的测量转化为串接电阻上电压的测量。该铁芯接地电流在线监测装置由信号处理部分、A/D转换部分及输出控制部分等模块构成,图2所示是其原理框图。图中,A/D转换采用MAX197,该芯片的精度为12位,带故障保护输入多路转换器和8路模拟输入通道,具有6μs的变换时间;通讯模块采用杭州爱赛德公司生产的GSM模块;输出控制主要是指发生故障后在接地线上串接限流电阻(这是目前常用的故障处理方法),同时现场灯光报警;信号处理部分根据输入信号的强弱分成两路,弱信号部分的处理电路如图3所示,其中OP27是精密运算放大器。MAX274就是本文要重点介绍的有源滤波器芯片。
2 MAX274芯片简介
普通运放和RC网络组成的滤波器元件较多,参数调节复杂,杂散电容会大大影响滤波器特性。MAX274是单片集成有源滤波器,它无需外接电容,只要调整外部4个电阻即可。MAX274的主要参数特性如下:
●可以根据需要设计成Butterworth、Chebyshev或Bessel滤波器形式;
●可以实现低通或带通滤波输出;
●采用+5V或±5V电源供电;
●每片由4个2阶滤波单元组成(共8阶),并可以实现芯片级联;
●自带设计软件,可以进行辅助设计和仿真;
●中心或截止频率f0范围为100Hz~150kHz。
MAX274的引脚及外部接口图如图4所示,各引脚功能如下:
INX(2,11,14,23 ):信号输入;
LPOX(1,12,13,24):低通输出;
BPOX(4,9,16,21):带通输出;
FC:RX/RY调节端,可接到V+、V-或GND。
3 MAX274的应用设计与仿真实现
变压器监测现场的干扰主要有电磁干扰、风扇振动(8~25kHz)、可控硅动作(200~300kHz和700~900kHz)和电台通讯信号(800kHz左右)等,这些信号相对都集中在较高频段。因此,滤波器应设计为低通滤波器。Butterworth滤波器在通带内具有最大平坦的幅度特性,而且随着频率升高呈现单调递减的特点,因而比较适合本设计。
其参数设计过程如下:
第一步,由公式R2=(2×109/f0),计算出R2;
第二步,由公式R4=R2-5kΩ,计算出R4;
接下来,计算R3以决定Q值,R3与Q的值成正比例关系,其关系式为R3=R2 Q RX/RY,其中RX和RY是滤波器单元内的两个电阻,其比值由FC管脚连接到哪个引脚决定,具体见表1所列。
表1 FC接点与RX/RY的比值
最后计算出R1,R1主要用来设定增益。对于低通滤波器,R1的值与增益成反比。其关系式为:
R1=(R2/HOLP)·(RX/RY)
滤波器的设计虽然也可以采用上述步骤手算,但对高阶滤波器宜采用软件辅助设计。用滤波器设计专用软件MAX274 Software进行滤波器设计非常方便,可以节省大量时间,同时也避免了人为计算的错误。软件仿真可以完成阶数、极点、Q值的计算,可生成仿真增益Gain和相位Phase的响应曲线,并计算外接电阻的阻值。
本设计中低通Butte
摘要:针对变压器铁芯接地电流在线监测项目中现场干扰比较严重的问题,给出了采用Maxim公司有源滤波芯片MAX274设计有源滤波器的方法。同时给出了实验结果以及应用注意事项。
关键词:MAX274; 有源滤波器; 变压器铁芯; 在线监测
大型变压器在运行时,其铁芯接地电流很小,约为几毫安到几十毫安,但当变压器发生铁芯多点接地故障时,其铁芯接地电流将增大到几安培甚至几十安培,从而会导致局部铁芯过热,严重时可能造成轻瓦斯动作甚至重瓦斯动作跳闸。
目前,现场人员多采用钳形电流表夹住铁芯接地线来监测其电流,但由于变压器强磁场的干扰,测量值很不精确,甚至出现同一测量点几次测量值差别迥异的情况,这样测量的参考价值值得怀疑;而国内有些单位研制的自动监测装置虽能及时发现多点接地故障,但缺乏故障后的实时监测功能。为此,笔者设计了一种基于GSM通讯的在线监测装置,较好地解决了变压器铁芯接地电流在线监测的问题。为了解决正常状态下接地电流很小,受到的现场干扰却比较严重的问题,设计中采用了Maxim公司开发的8阶连续时间滤波器芯片MAX274。实践证明MAX274的滤波效果比较理想。
1 在线监测装置的系统组成
为尽量如实反映变压器接地电流信号的情况,笔者在图1所示的一次接线图的变压器接地线上串接了一个2Ω的无感电阻,这样就将铁芯接地电流的测量转化为串接电阻上电压的测量。该铁芯接地电流在线监测装置由信号处理部分、A/D转换部分及输出控制部分等模块构成,图2所示是其原理框图。图中,A/D转换采用MAX197,该芯片的精度为12位,带故障保护输入多路转换器和8路模拟输入通道,具有6μs的变换时间;通讯模块采用杭州爱赛德公司生产的GSM模块;输出控制主要是指发生故障后在接地线上串接限流电阻(这是目前常用的故障处理方法),同时现场灯光报警;信号处理部分根据输入信号的强弱分成两路,弱信号部分的处理电路如图3所示,其中OP27是精密运算放大器。MAX274就是本文要重点介绍的有源滤波器芯片。
2 MAX274芯片简介
普通运放和RC网络组成的滤波器元件较多,参数调节复杂,杂散电容会大大影响滤波器特性。MAX274是单片集成有源滤波器,它无需外接电容,只要调整外部4个电阻即可。MAX274的主要参数特性如下:
●可以根据需要设计成Butterworth、Chebyshev或Bessel滤波器形式;
●可以实现低通或带通滤波输出;
●采用+5V或±5V电源供电;
●每片由4个2阶滤波单元组成(共8阶),并可以实现芯片级联;
●自带设计软件,可以进行辅助设计和仿真;
●中心或截止频率f0范围为100Hz~150kHz。
MAX274的引脚及外部接口图如图4所示,各引脚功能如下:
INX(2,11,14,23 ):信号输入;
LPOX(1,12,13,24):低通输出;
BPOX(4,9,16,21):带通输出;
FC:RX/RY调节端,可接到V+、V-或GND。
3 MAX274的应用设计与仿真实现
变压器监测现场的干扰主要有电磁干扰、风扇振动(8~25kHz)、可控硅动作(200~300kHz和700~900kHz)和电台通讯信号(800kHz左右)等,这些信号相对都集中在较高频段。因此,滤波器应设计为低通滤波器。Butterworth滤波器在通带内具有最大平坦的幅度特性,而且随着频率升高呈现单调递减的特点,因而比较适合本设计。
其参数设计过程如下:
第一步,由公式R2=(2×109/f0),计算出R2;
第二步,由公式R4=R2-5kΩ,计算出R4;
接下来,计算R3以决定Q值,R3与Q的值成正比例关系,其关系式为R3=R2 Q RX/RY,其中RX和RY是滤波器单元内的两个电阻,其比值由FC管脚连接到哪个引脚决定,具体见表1所列。
表1 FC接点与RX/RY的比值
最后计算出R1,R1主要用来设定增益。对于低通滤波器,R1的值与增益成反比。其关系式为:
R1=(R2/HOLP)·(RX/RY)
滤波器的设计虽然也可以采用上述步骤手算,但对高阶滤波器宜采用软件辅助设计。用滤波器设计专用软件MAX274 Software进行滤波器设计非常方便,可以节省大量时间,同时也避免了人为计算的错误。软件仿真可以完成阶数、极点、Q值的计算,可生成仿真增益Gain和相位Phase的响应曲线,并计算外接电阻的阻值。
本设计中低通Butte
上一篇:NS两款高性能转换器
上一篇:适用于便携应用的超薄扬声器
热门点击
- OrCAD/PSpice9偏压点和直流扫描分
- 16位Σ-ΔA/D转换器AD7705与微控制
- 有限带宽信号的采样和混叠分析
- 一种增大放大器增益的方法
- LTC6910系列数字控制可编程增益放大器原
- 四通道四象限模拟乘法器MLT04
- 可编程多路A/D转换芯片THS1206的原理
- 使用Verilog实现基于FPGA的SDRA
- 基于FCHIP2指纹芯片的应用方案
- PCB线路板抄板方法及步骤
推荐技术资料
- 泰克新发布的DSA830
- 泰克新发布的DSA8300在一台仪器中同时实现时域和频域分析,DS... [详细]