分布式车身控制系统设计
发布时间:2007/8/29 0:00:00 访问次数:451
摘要:分布式车身控制系统是针对国产重型车电子化自控操作和故障诊断显示的需求而设计的。该系统采用分布式结构和LIN(Local Interconnect Network)总线通讯方式,优化了系统结构,减少了电缆数量。该系统同时采用智能功率芯片来驱动大电流负载,从而增加了系统的可靠性,降低了售后服务的成本。
关键词:分布式;车身控制;LIN总线;智能功率芯片;故障诊断
1 引言
随着汽车电子的迅猛发展,现代汽车中电控单元的数量也逐渐增多,这些电控单元大致可分成动力传动装置控制(如发动机控制和变速控制)、底盘控制(如汽车防抱死系统ABS)和车身控制三类。其中车身控制系统主要用来提高驾驶的方便性和乘坐的舒适性,该系统涵盖的范围较广,包括灯光控制、车门控制、座位控制、气候(空调)控制、仪表盘显示等。本文将介绍一种分布式车身控制系统的设计方法,该系统可对汽车灯光、雨刷及底盘部分电磁阀等节点进行分布式控制。
该控制系统的主要功能如下:
●控制汽车上所有车灯。
●控制雨刷低速、高速、间歇式工作。
●控制与取力器、全轮驱动、轮间和轴间差速器相连的电磁阀工作。
●实时响应驾驶室控制开关的动作:按照SAE(Society of Automotive Engineers)的标准,实时性响应时间在10ms~100ms之间。
●灯光自检功能:汽车上电后所有的灯点亮5ms后熄灭,以检查所有灯是否工作正常。
●故障诊断定位能力:智能功率开关具有过流、过温、过压保护和开路检测功能,MCU通过检测智能功率开关各通路的State引脚状态可判断出哪路负载出现故障。
2 系统结构
该系统采用分布式结构。因为车身控制系统的控制对象比较多而且位置分散,若采用点对点集中控制方式,控制模块与被控对象之间就需要大量连接电缆,这势必造成车内布线复杂、制造和安装困难,并存在故障隐患。而分布式系统结构可以根据控制对象的位置来设计控制模块,从而缩短了控制对象和控制模块的距离。各模块间通过LIN总线来通讯,该方式仅需一根线作为通讯线,这样加上地线和电源线总共三根线,从而简化了布线和系统结构增加了系统的灵活性,并可方便地增减节点。此外,分布式系统结构还可降低单板的静态电流,增加单板的稳定性。图1所示是其系统结构图。
根据系统功能要求和结构特点,该控制系统被分成主控模块和三个子模块(前模块、底盘模块和后模块)。其中主控模块位于车的驾驶室内,主要检测驾驶室内控制开关的状态,并根据这些控制开关的状态实现相应的控制策略,然后将控制命令发送给各子模块,同时检查各用电设备的工作状态,若有故障则报警显示。前模块位于车的前部,主要控制车前部的用电设备,包括车前部的灯(远光灯、近光灯、雾灯、左右前转向灯)、雨刷、风扇、加热、紧急报警、喇叭的工作等。底盘模块位于车的底盘,主要控制与取力器、全轮驱动、轮间和轴间差速器相连的电磁阀的工作。后模块位于车的后部,主要控制车后部的用电设备,包括尾灯、刹车灯、左右后转向灯的工作。
主控模块和子模块的功能如图2所示。其中电压调整单元可将汽车内的24V电压转换成5V电压,供给单片机、功率芯片等电压为5V的芯片。
主模块中的微处理器控制单元(MCU)采用Mo-torola的MC68HC908GZ16来实现,主要用于采集输入的开关状态,以完成相应的控制策略,同时将控制命令通过串口送给各子模块,并根据各子模块反馈的负载状态判断是否存在故障,若有故障则报警显示。图3所示是主模块的硬件原理图。
各子模块中的微处理器控制单元采用MC68HC908GR8,主要用于完成负载驱动,并采集负载的工作状态发送给主控模块。其硬件原理图如图4所示。
开关状态检测单元的任务是在24V的开关状态电压转换成5V后,将此并行数据转换成串行数据送给MCU,这样可大大减少所需MCU的
摘要:分布式车身控制系统是针对国产重型车电子化自控操作和故障诊断显示的需求而设计的。该系统采用分布式结构和LIN(Local Interconnect Network)总线通讯方式,优化了系统结构,减少了电缆数量。该系统同时采用智能功率芯片来驱动大电流负载,从而增加了系统的可靠性,降低了售后服务的成本。
关键词:分布式;车身控制;LIN总线;智能功率芯片;故障诊断
1 引言
随着汽车电子的迅猛发展,现代汽车中电控单元的数量也逐渐增多,这些电控单元大致可分成动力传动装置控制(如发动机控制和变速控制)、底盘控制(如汽车防抱死系统ABS)和车身控制三类。其中车身控制系统主要用来提高驾驶的方便性和乘坐的舒适性,该系统涵盖的范围较广,包括灯光控制、车门控制、座位控制、气候(空调)控制、仪表盘显示等。本文将介绍一种分布式车身控制系统的设计方法,该系统可对汽车灯光、雨刷及底盘部分电磁阀等节点进行分布式控制。
该控制系统的主要功能如下:
●控制汽车上所有车灯。
●控制雨刷低速、高速、间歇式工作。
●控制与取力器、全轮驱动、轮间和轴间差速器相连的电磁阀工作。
●实时响应驾驶室控制开关的动作:按照SAE(Society of Automotive Engineers)的标准,实时性响应时间在10ms~100ms之间。
●灯光自检功能:汽车上电后所有的灯点亮5ms后熄灭,以检查所有灯是否工作正常。
●故障诊断定位能力:智能功率开关具有过流、过温、过压保护和开路检测功能,MCU通过检测智能功率开关各通路的State引脚状态可判断出哪路负载出现故障。
2 系统结构
该系统采用分布式结构。因为车身控制系统的控制对象比较多而且位置分散,若采用点对点集中控制方式,控制模块与被控对象之间就需要大量连接电缆,这势必造成车内布线复杂、制造和安装困难,并存在故障隐患。而分布式系统结构可以根据控制对象的位置来设计控制模块,从而缩短了控制对象和控制模块的距离。各模块间通过LIN总线来通讯,该方式仅需一根线作为通讯线,这样加上地线和电源线总共三根线,从而简化了布线和系统结构增加了系统的灵活性,并可方便地增减节点。此外,分布式系统结构还可降低单板的静态电流,增加单板的稳定性。图1所示是其系统结构图。
根据系统功能要求和结构特点,该控制系统被分成主控模块和三个子模块(前模块、底盘模块和后模块)。其中主控模块位于车的驾驶室内,主要检测驾驶室内控制开关的状态,并根据这些控制开关的状态实现相应的控制策略,然后将控制命令发送给各子模块,同时检查各用电设备的工作状态,若有故障则报警显示。前模块位于车的前部,主要控制车前部的用电设备,包括车前部的灯(远光灯、近光灯、雾灯、左右前转向灯)、雨刷、风扇、加热、紧急报警、喇叭的工作等。底盘模块位于车的底盘,主要控制与取力器、全轮驱动、轮间和轴间差速器相连的电磁阀的工作。后模块位于车的后部,主要控制车后部的用电设备,包括尾灯、刹车灯、左右后转向灯的工作。
主控模块和子模块的功能如图2所示。其中电压调整单元可将汽车内的24V电压转换成5V电压,供给单片机、功率芯片等电压为5V的芯片。
主模块中的微处理器控制单元(MCU)采用Mo-torola的MC68HC908GZ16来实现,主要用于采集输入的开关状态,以完成相应的控制策略,同时将控制命令通过串口送给各子模块,并根据各子模块反馈的负载状态判断是否存在故障,若有故障则报警显示。图3所示是主模块的硬件原理图。
各子模块中的微处理器控制单元采用MC68HC908GR8,主要用于完成负载驱动,并采集负载的工作状态发送给主控模块。其硬件原理图如图4所示。
开关状态检测单元的任务是在24V的开关状态电压转换成5V后,将此并行数据转换成串行数据送给MCU,这样可大大减少所需MCU的