线圈与金属导体距离δ线圈激励电流I和频率ω等参数来描述
发布时间:2024/3/17 19:08:04 访问次数:53
CS、RESR和LESL是描述所有频谱所需的关键参数。在最简条件下它们被假定为常数,不随频率变化。漏电流可由纯电阻RLeak近似表述。通常情况下,RLeak比RESR大几个数量级,可忽略不计。
专注于性能优化和大规模生产的电池创新人员需要采用灵敏的工具来表征电极浆料的成分并确保质量。
将Rheo-IS附件与Discovery HR搭配使用时,电池研究人员可以在真实的工艺相关条件下,通过阻抗谱测量来评估电极浆料中的导电结构,包括模拟混合、储存和涂层过程中颗粒分布变化的表征,从而促进电极材料开发,提高电池生产效率。
由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。
这种变化与电涡流效应有关,也与静磁学效应有关(与金属导体的电导率、磁导率、几何形状、线圈几何参数、激励电流频率以及线圈到金属导体的距离参数有关)。
假定金属导体是均质的,其性能是线形和各向同性的,则线圈——金属导体系统的磁导率u、电导率σ、尺寸因子r、线圈与金属导体距离δ线圈激励电流I和频率ω等参数来描述。因此线圈的阻抗可用函数Z=F(u,σ,r,δ,I,ω)来表示。
我们选择了纳米级的电涡流传感器KD5100,我们将两个探头安装在被测物振动方向的两端,测量夹持器的来回振动电涡流传感器KD5100其采用差动测量方式:两个精确匹配的传感器被放置在被测物平台两侧,这两个传感器组成了平衡桥电路相反的两端,这个结构提供了极好的线性和热稳定性,所以其输出准确地记录了线性的最微小移动,分辨率高达1nm。
安徽纽本科技有限公司http://fjbg.51dzw.com
CS、RESR和LESL是描述所有频谱所需的关键参数。在最简条件下它们被假定为常数,不随频率变化。漏电流可由纯电阻RLeak近似表述。通常情况下,RLeak比RESR大几个数量级,可忽略不计。
专注于性能优化和大规模生产的电池创新人员需要采用灵敏的工具来表征电极浆料的成分并确保质量。
将Rheo-IS附件与Discovery HR搭配使用时,电池研究人员可以在真实的工艺相关条件下,通过阻抗谱测量来评估电极浆料中的导电结构,包括模拟混合、储存和涂层过程中颗粒分布变化的表征,从而促进电极材料开发,提高电池生产效率。
由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。
这种变化与电涡流效应有关,也与静磁学效应有关(与金属导体的电导率、磁导率、几何形状、线圈几何参数、激励电流频率以及线圈到金属导体的距离参数有关)。
假定金属导体是均质的,其性能是线形和各向同性的,则线圈——金属导体系统的磁导率u、电导率σ、尺寸因子r、线圈与金属导体距离δ线圈激励电流I和频率ω等参数来描述。因此线圈的阻抗可用函数Z=F(u,σ,r,δ,I,ω)来表示。
我们选择了纳米级的电涡流传感器KD5100,我们将两个探头安装在被测物振动方向的两端,测量夹持器的来回振动电涡流传感器KD5100其采用差动测量方式:两个精确匹配的传感器被放置在被测物平台两侧,这两个传感器组成了平衡桥电路相反的两端,这个结构提供了极好的线性和热稳定性,所以其输出准确地记录了线性的最微小移动,分辨率高达1nm。
安徽纽本科技有限公司http://fjbg.51dzw.com