位置:51电子网 » 电子资讯 » 行业动态

​电子管的详解

发布时间:2020/4/7 11:02:30 访问次数:1859

电子管的定义

电子管是一种在气密性封闭容器(一般为玻璃管)中产生电流传导,利用电场对真空中的电子流的作用以获得信号放大或振荡的电子器件。早期应用于电视机、收音机扩音机等电子产品中,近年来逐渐被晶体管和集成电路所取代,但目前在一些高保真音响器材中,仍然使用电子管作为音频功率放大器件(香港人称使用电子管功率放大器为“煲胆”)。

电子管的表示

电子管在电器中用字母“v”或“ve”表示,旧标准用字母“g”表示。

电子管的发明简介

1904年,世界上第一只电子管在英国物理学家弗莱明的手下诞生了。弗莱明为此获得了这项发明的专利权。人类第一只电子管的诞生,标志着世界从此进入了电子时代。

说起电子管的发明,我们首先得从“爱迪生效应”谈起。爱迪生这位举世闻名的大发明家,在研究白炽灯的寿命时,在灯泡的碳丝附近焊上一小块金属片。结果,他发现了一个奇怪的现象:金属片虽然没有与灯丝接触,但如果在它们之间加上电压,灯丝就会产生一股电流,趋向附近的金属片。这股神秘的电流是从哪里来的?爱迪生也无法解释,但他不失时机地将这一发明注册了专利,并称之为“爱迪生效应”。后来,有人证明电流的产生是因为炽热的金属能向周围发射电子造成的。但最先预见到这一效应具有实用价值的,则是英国物理学家和电气工程师弗莱明。

电子管的优缺点

由于电子管体积大、功耗大、发热厉害、电源利用效率低、结构脆弱而且需要高压电源的缺点,现在它的绝大部分用途已经基本被固体器件晶体管所取代。但是电子管负载能力强,线性性能优于晶体管,在高频大功率领域的工作特性要比晶体管更好,所以仍然在一些地方(如大功率无线电发射设备)继续发挥着不可替代的作用。

电子管的种类

(一)按用途分类

电子管按其用途的不同可分为电压放大管、功率大管、充气管、闸流管、引燃管、混频或变频管、整流管、振荡管、检波管、调谐指过管、稳压管等。

(二)按电极数分类

电子管按其电极数的不同可分为电压放大管、三极管、四极管、五极管、六极管、七极管、八极管、九极管和复合管等。三极以上的电管又称为多极管或多栅管。

(三)按外形分类

电子管按其外形及外壳材料可分为瓶形玻璃管(st管)、“橡实”管、筒形玻璃管(gt管)、大型玻璃管(g式管)、金属瓷管、小型管(也称花生管或指形管、mt管)、塔形管、超小型管(铅笔形管)等多种。

(四)按内部结构分类

电子管按其内部结构可分为单二极管、二极管、双二极三极管、双二极管极管、单三极管、功率五极管、束射四极管、束射五极管、双一极管、二极——五极复合管、又束射四极管、三极-五极复合管、三极-六极复合管、三极-七极复合管、束射功率各处室等多种类型。

(五)按阴极的加热方式分类

电子管按阴极的加热方式可分为直热式阴极电子管(电流直接通过阴极使其达到热电子发射状态)和旁热式阴极电子管(通过阴极旁的灯丝加热阴极)。

(六)按屏蔽方式分类

电子管按屏蔽方式可分为锐截止屏蔽电子管和遥截止屏蔽电子管。

(七)按冷却方式分类

电子管按冷却方式可分为水冷式电子管、风冷式电子管和自然冷却式电子管。

电子管的三种工作状态

电子管放大器的工作状态决定于放大器栅极电路中所加栅偏压eg的大少,改变栅偏压eg,阳极电流中的直流分量就要发生变化。当栅极偏压eg等于截止栅压ug0的一半时,在交流信号变化的整个周期内均有阳极电流流过,阳极的直流分量最大,失真最小,可效率最低,种工作状态我们称甲类工作状态。它适宜于对失真指标要求较高的放大器。

当栅极电压等于截止栅压ug0时,这时只有在栅极交流信号的正半周内才有阳极电流。这种工作状态叫乙类工作状态,在此状态下可获得较高的工作效率,多用于低频推挽式放大电路。

若栅偏压较截止栅呀还小的话,此时只有在赡极输入信号的近半周部分时间内才有阳极电流,这种是丙类状态,此种状态效率最高,但失真也最大。适宜于一些倍频电路的应用。

基本电子管一般有三个极:

一个阴极(k)用来发射电子;

一个阳极(a)用来吸收阴极所发射的电子;

一个栅极(g)用来控制流到阳极的电子流量。

阴极发射电子的基本条件:阴极本身必须具有相当的热量,阴极又分两种,一种是直热式,它是由电流直接通过阴极使阴极发热而发射电子;另一种称旁热式阴极,其结构一般是一个空心金属管,管内装有绕成螺线形的灯丝,加上灯丝电压使灯丝发热从而使阴极发热而发射电子,现在日常用的多半是种电子管.由阴极发射出来的电子穿过栅极金属丝间的空隙而达到阳极,由于栅极比阳极离阴极近得多,因而改变栅极电位对阳极电流的影响比改变阳极电压时大得多,这就是三极管的放大作用.换句话说就是栅极电压对阳极电流的控制作用.我们用一个数称跨导(s)来表示.另外还有一个参数μ来描述电子管的放大系数,它的意义是说明了栅极电压控制阳流的能力比阳极电压对阳流的作用大多少倍.

为了提高电子管的放大系数,在三极管的阳极和控制栅极之间另外加入一个栅极称之为帘栅极,而构成四极管,由于帘栅极具有比阴极高很多的正电压,因此也是一个能力很强的加速电极,它使得电子以更高的速度迅速到达阳极,这样控制栅极的控制作用变得更为显著.因此比三极管具有更大的放大系数.但是由于帘栅极对电子的加速作用,高速运动的电子打到阳极,这些高速电子的动能很大,将从阳极上打出所谓二次电子,这些二次电子有些将被帘栅吸收形成帘栅电流,使帘栅电流上升这会导致帘栅电压的下降,从而导致阳极电流的下降,为此四极管的放大系数受到一定而限制.

为了解决上述矛盾,在四极管帘栅极外的两侧再加入一对与阴极相连的集射极,由于集射极的电位与阴极相同,所以对电子有排斥作用,使得电子在通过帘栅极之后在集射极的作用下按一定方向前进并形成扁形射束,这扁形电子射束的电子密度很大,从而形成了一个低压区,从阳极上打出来的二次电子受到这个低压区的排斥作用而被推回到阳极,从而使帘栅电流大大减少,电子管的放大能力得而加强.这种电子管我们称为束射四极管,束射四极管不但放大系数较三极管为高,而且其阳极面积较大,允许通过较大的电流,因此现在的功放机常用到它作为功率放大。

电子管的定义

电子管是一种在气密性封闭容器(一般为玻璃管)中产生电流传导,利用电场对真空中的电子流的作用以获得信号放大或振荡的电子器件。早期应用于电视机、收音机扩音机等电子产品中,近年来逐渐被晶体管和集成电路所取代,但目前在一些高保真音响器材中,仍然使用电子管作为音频功率放大器件(香港人称使用电子管功率放大器为“煲胆”)。

电子管的表示

电子管在电器中用字母“v”或“ve”表示,旧标准用字母“g”表示。

电子管的发明简介

1904年,世界上第一只电子管在英国物理学家弗莱明的手下诞生了。弗莱明为此获得了这项发明的专利权。人类第一只电子管的诞生,标志着世界从此进入了电子时代。

说起电子管的发明,我们首先得从“爱迪生效应”谈起。爱迪生这位举世闻名的大发明家,在研究白炽灯的寿命时,在灯泡的碳丝附近焊上一小块金属片。结果,他发现了一个奇怪的现象:金属片虽然没有与灯丝接触,但如果在它们之间加上电压,灯丝就会产生一股电流,趋向附近的金属片。这股神秘的电流是从哪里来的?爱迪生也无法解释,但他不失时机地将这一发明注册了专利,并称之为“爱迪生效应”。后来,有人证明电流的产生是因为炽热的金属能向周围发射电子造成的。但最先预见到这一效应具有实用价值的,则是英国物理学家和电气工程师弗莱明。

电子管的优缺点

由于电子管体积大、功耗大、发热厉害、电源利用效率低、结构脆弱而且需要高压电源的缺点,现在它的绝大部分用途已经基本被固体器件晶体管所取代。但是电子管负载能力强,线性性能优于晶体管,在高频大功率领域的工作特性要比晶体管更好,所以仍然在一些地方(如大功率无线电发射设备)继续发挥着不可替代的作用。

电子管的种类

(一)按用途分类

电子管按其用途的不同可分为电压放大管、功率大管、充气管、闸流管、引燃管、混频或变频管、整流管、振荡管、检波管、调谐指过管、稳压管等。

(二)按电极数分类

电子管按其电极数的不同可分为电压放大管、三极管、四极管、五极管、六极管、七极管、八极管、九极管和复合管等。三极以上的电管又称为多极管或多栅管。

(三)按外形分类

电子管按其外形及外壳材料可分为瓶形玻璃管(st管)、“橡实”管、筒形玻璃管(gt管)、大型玻璃管(g式管)、金属瓷管、小型管(也称花生管或指形管、mt管)、塔形管、超小型管(铅笔形管)等多种。

(四)按内部结构分类

电子管按其内部结构可分为单二极管、二极管、双二极三极管、双二极管极管、单三极管、功率五极管、束射四极管、束射五极管、双一极管、二极——五极复合管、又束射四极管、三极-五极复合管、三极-六极复合管、三极-七极复合管、束射功率各处室等多种类型。

(五)按阴极的加热方式分类

电子管按阴极的加热方式可分为直热式阴极电子管(电流直接通过阴极使其达到热电子发射状态)和旁热式阴极电子管(通过阴极旁的灯丝加热阴极)。

(六)按屏蔽方式分类

电子管按屏蔽方式可分为锐截止屏蔽电子管和遥截止屏蔽电子管。

(七)按冷却方式分类

电子管按冷却方式可分为水冷式电子管、风冷式电子管和自然冷却式电子管。

电子管的三种工作状态

电子管放大器的工作状态决定于放大器栅极电路中所加栅偏压eg的大少,改变栅偏压eg,阳极电流中的直流分量就要发生变化。当栅极偏压eg等于截止栅压ug0的一半时,在交流信号变化的整个周期内均有阳极电流流过,阳极的直流分量最大,失真最小,可效率最低,种工作状态我们称甲类工作状态。它适宜于对失真指标要求较高的放大器。

当栅极电压等于截止栅压ug0时,这时只有在栅极交流信号的正半周内才有阳极电流。这种工作状态叫乙类工作状态,在此状态下可获得较高的工作效率,多用于低频推挽式放大电路。

若栅偏压较截止栅呀还小的话,此时只有在赡极输入信号的近半周部分时间内才有阳极电流,这种是丙类状态,此种状态效率最高,但失真也最大。适宜于一些倍频电路的应用。

基本电子管一般有三个极:

一个阴极(k)用来发射电子;

一个阳极(a)用来吸收阴极所发射的电子;

一个栅极(g)用来控制流到阳极的电子流量。

阴极发射电子的基本条件:阴极本身必须具有相当的热量,阴极又分两种,一种是直热式,它是由电流直接通过阴极使阴极发热而发射电子;另一种称旁热式阴极,其结构一般是一个空心金属管,管内装有绕成螺线形的灯丝,加上灯丝电压使灯丝发热从而使阴极发热而发射电子,现在日常用的多半是种电子管.由阴极发射出来的电子穿过栅极金属丝间的空隙而达到阳极,由于栅极比阳极离阴极近得多,因而改变栅极电位对阳极电流的影响比改变阳极电压时大得多,这就是三极管的放大作用.换句话说就是栅极电压对阳极电流的控制作用.我们用一个数称跨导(s)来表示.另外还有一个参数μ来描述电子管的放大系数,它的意义是说明了栅极电压控制阳流的能力比阳极电压对阳流的作用大多少倍.

为了提高电子管的放大系数,在三极管的阳极和控制栅极之间另外加入一个栅极称之为帘栅极,而构成四极管,由于帘栅极具有比阴极高很多的正电压,因此也是一个能力很强的加速电极,它使得电子以更高的速度迅速到达阳极,这样控制栅极的控制作用变得更为显著.因此比三极管具有更大的放大系数.但是由于帘栅极对电子的加速作用,高速运动的电子打到阳极,这些高速电子的动能很大,将从阳极上打出所谓二次电子,这些二次电子有些将被帘栅吸收形成帘栅电流,使帘栅电流上升这会导致帘栅电压的下降,从而导致阳极电流的下降,为此四极管的放大系数受到一定而限制.

为了解决上述矛盾,在四极管帘栅极外的两侧再加入一对与阴极相连的集射极,由于集射极的电位与阴极相同,所以对电子有排斥作用,使得电子在通过帘栅极之后在集射极的作用下按一定方向前进并形成扁形射束,这扁形电子射束的电子密度很大,从而形成了一个低压区,从阳极上打出来的二次电子受到这个低压区的排斥作用而被推回到阳极,从而使帘栅电流大大减少,电子管的放大能力得而加强.这种电子管我们称为束射四极管,束射四极管不但放大系数较三极管为高,而且其阳极面积较大,允许通过较大的电流,因此现在的功放机常用到它作为功率放大。

热门点击

推荐电子资讯

Chrome 31:iOS版发布
iOS版Chrome 31主要更新:   “Au... [详细]
版权所有:51dzw.COM
深圳服务热线:13692101218  13751165337
粤ICP备09112631号-6(miitbeian.gov.cn)
公网安备44030402000607
深圳市碧威特网络技术有限公司
付款方式